High-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives based on the sparse logistic regression model with a bridge penalty
This study addresses the problem of the high-dimensionality of quantitative structure-activity relationship (QSAR) classification modeling. A new selection of descriptors that truly affect biological activity and a QSAR classification model estimation method are proposed by combining the sparse logi...
Saved in:
Main Authors: | Algamal, Z. Y., Lee, M. H., Al-Fakih, A. M., Aziz, M. |
---|---|
格式: | Article |
出版: |
John Wiley and Sons Ltd
2017
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/76444/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017532383&doi=10.1002%2fcem.2889&partnerID=40&md5=92b3166570641182f2b42a6a5c827275 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives
由: Algamal, Z. Y., et al.
出版: (2017) -
High-dimensional QSAR modelling using penalized linear regression model with L1/2-norm
由: Algamal, Z. Y., et al.
出版: (2016) -
A novel molecular descriptor selection method in QSAR classification model based on weighted penalized logistic regression
由: Algamal, Z. Y., et al.
出版: (2017) -
A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification
由: Algamal, Zakariya Yahya, et al.
出版: (2019) -
Improving penalized logistic regression model with missing values in high-dimensional data
由: Alharthi, Aiedh Mrisi, et al.
出版: (2022)