Text independent speaker identification using gaussian mixture model
This paper describes text-independent (TI) Speaker Identification (ID) using Gaussian mixture models (GMM). The use of GMM approach is motivated by that the individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for speaker id...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2007
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/7637/1/Sheikh_Hussain_Shaikh_2007_Text_Independent_Speaker_Identification_Using.pdf http://eprints.utm.my/id/eprint/7637/ http://dx.doi.org/10.1109/ICIAS.2007.4658373 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.7637 |
---|---|
record_format |
eprints |
spelling |
my.utm.76372010-06-01T15:54:12Z http://eprints.utm.my/id/eprint/7637/ Text independent speaker identification using gaussian mixture model Ting, Chee Ming Shaikh Salleh, Sheikh Hussain Tan, Tian Swee Ariff, Ahmad Kamarul TK Electrical engineering. Electronics Nuclear engineering This paper describes text-independent (TI) Speaker Identification (ID) using Gaussian mixture models (GMM). The use of GMM approach is motivated by that the individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for speaker identity modeling. For speaker model training, a fast re-estimation algorithm based on highest likelihood mixture clustering is introduced. In this work, the GMM is evaluated on TI Speaker ID task via series of experiments (model convergence, effect of feature set, number of Gaussian components, and training utterance length on identification rate). The database consisted of Malay clean sentence speech database uttered by 10 speakers (3 female and 7 male). Each speaker provides the same 40 sentences utterances (average length- 3.5s) with different text. The sentences for testing were different from those for training. The GMM achieved 98.4% identification rate using 5 training sentences. The model training based on highest likelihood clustering is shown to perform comparably to conventional expectation-maximization training but consumes much shorter computational time. 2007-11 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/7637/1/Sheikh_Hussain_Shaikh_2007_Text_Independent_Speaker_Identification_Using.pdf Ting, Chee Ming and Shaikh Salleh, Sheikh Hussain and Tan, Tian Swee and Ariff, Ahmad Kamarul (2007) Text independent speaker identification using gaussian mixture model. In: Intelligent and Advanced Systems, 2007. ICIAS 2007. International Conference, 25-28 Nov 2007, Kuala Lumpur, Malaysia. http://dx.doi.org/10.1109/ICIAS.2007.4658373 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Ting, Chee Ming Shaikh Salleh, Sheikh Hussain Tan, Tian Swee Ariff, Ahmad Kamarul Text independent speaker identification using gaussian mixture model |
description |
This paper describes text-independent (TI) Speaker Identification (ID) using Gaussian mixture models (GMM). The use of GMM approach is motivated by that the individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for speaker identity modeling. For speaker model training, a fast re-estimation algorithm based on highest likelihood mixture clustering is introduced. In this work, the GMM is evaluated on TI Speaker ID task via series of experiments (model convergence, effect of feature set, number of Gaussian components, and training utterance length on identification rate). The database consisted of Malay clean sentence speech database uttered by 10 speakers (3 female and 7 male). Each speaker provides the same 40 sentences utterances (average length- 3.5s) with different text. The sentences for testing were different from those for training. The GMM achieved 98.4% identification rate using 5 training sentences. The model training based on highest likelihood clustering is shown to perform comparably to conventional expectation-maximization training but consumes much shorter computational time. |
format |
Conference or Workshop Item |
author |
Ting, Chee Ming Shaikh Salleh, Sheikh Hussain Tan, Tian Swee Ariff, Ahmad Kamarul |
author_facet |
Ting, Chee Ming Shaikh Salleh, Sheikh Hussain Tan, Tian Swee Ariff, Ahmad Kamarul |
author_sort |
Ting, Chee Ming |
title |
Text independent speaker identification using gaussian mixture model |
title_short |
Text independent speaker identification using gaussian mixture model |
title_full |
Text independent speaker identification using gaussian mixture model |
title_fullStr |
Text independent speaker identification using gaussian mixture model |
title_full_unstemmed |
Text independent speaker identification using gaussian mixture model |
title_sort |
text independent speaker identification using gaussian mixture model |
publishDate |
2007 |
url |
http://eprints.utm.my/id/eprint/7637/1/Sheikh_Hussain_Shaikh_2007_Text_Independent_Speaker_Identification_Using.pdf http://eprints.utm.my/id/eprint/7637/ http://dx.doi.org/10.1109/ICIAS.2007.4658373 |
_version_ |
1643644817623744512 |
score |
13.211869 |