Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong

Observing the rapid urban expansions and numerous infrastructure developments in the East-Asian context, many cities are suffering the urban heat island (UHI) effect and its associated environmental and social challenges. Moreover, the lack of sufficient attention to the application of effective hea...

Full description

Saved in:
Bibliographic Details
Main Authors: Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., Omrany, H., Wang, Z. H., Akbari, H.
Format: Article
Published: Elsevier Ltd 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/75925/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994745808&doi=10.1016%2fj.cities.2016.09.003&partnerID=40&md5=055ab114a86371c54974c26bcb79cf68
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.75925
record_format eprints
spelling my.utm.759252018-05-30T04:10:59Z http://eprints.utm.my/id/eprint/75925/ Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong Aflaki, A. Mirnezhad, M. Ghaffarianhoseini, A. Ghaffarianhoseini, A. Omrany, H. Wang, Z. H. Akbari, H. TA Engineering (General). Civil engineering (General) Observing the rapid urban expansions and numerous infrastructure developments in the East-Asian context, many cities are suffering the urban heat island (UHI) effect and its associated environmental and social challenges. Moreover, the lack of sufficient attention to the application of effective heat mitigation strategies in current urban development in these cities can drastically intensify the eventual impacts of UHI. Therefore, many governmental sectors and policy makers have been implementing operative solutions for cooling cities. Nevertheless, this study argues that in Kuala Lumpur, despite the growing attention to this matter, there is still a need for more rigorous consideration by the architecture, engineering and construction (AEC) professionals as well as more scholarly studies to reflect sustainable solutions to the UHI effect. As a result, today, some of the dense urban areas in Kuala Lumpur are characterized with the use of thermally massive building materials, urban surfaces with low albedo, complex urban morphology, waste heat, and low density of vegetation. On the other hand, recent studies demonstrate that there has been a rapidly increasing interest in studies related to UHI in other East Asian regions such as Singapore and Hong Kong. Hence, this study develops a comparative analysis to provide a state-of-the-art review of the recent attempts towards mitigating the UHI effect in Kuala Lumpur, Singapore, and Hong Kong. Among several available UHI mitigation strategies, this study is limited to the analysis of the environmental impacts of urban vegetation (green roofs, green facades, vertical greeneries and green pavements). Findings reveal that in general, urban greening can significantly mitigate the UHI intensity, both directly and indirectly, resulting in the decrease of global air temperature and mean radiant temperature up to 4 °C and 4.5 °C respectively. Overall, the study develops new practical guidelines, discusses the public benefits and elaborates on the future directions of UHI studies. Elsevier Ltd 2017 Article PeerReviewed Aflaki, A. and Mirnezhad, M. and Ghaffarianhoseini, A. and Ghaffarianhoseini, A. and Omrany, H. and Wang, Z. H. and Akbari, H. (2017) Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62 . pp. 131-145. ISSN 0264-2751 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994745808&doi=10.1016%2fj.cities.2016.09.003&partnerID=40&md5=055ab114a86371c54974c26bcb79cf68
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
Aflaki, A.
Mirnezhad, M.
Ghaffarianhoseini, A.
Ghaffarianhoseini, A.
Omrany, H.
Wang, Z. H.
Akbari, H.
Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
description Observing the rapid urban expansions and numerous infrastructure developments in the East-Asian context, many cities are suffering the urban heat island (UHI) effect and its associated environmental and social challenges. Moreover, the lack of sufficient attention to the application of effective heat mitigation strategies in current urban development in these cities can drastically intensify the eventual impacts of UHI. Therefore, many governmental sectors and policy makers have been implementing operative solutions for cooling cities. Nevertheless, this study argues that in Kuala Lumpur, despite the growing attention to this matter, there is still a need for more rigorous consideration by the architecture, engineering and construction (AEC) professionals as well as more scholarly studies to reflect sustainable solutions to the UHI effect. As a result, today, some of the dense urban areas in Kuala Lumpur are characterized with the use of thermally massive building materials, urban surfaces with low albedo, complex urban morphology, waste heat, and low density of vegetation. On the other hand, recent studies demonstrate that there has been a rapidly increasing interest in studies related to UHI in other East Asian regions such as Singapore and Hong Kong. Hence, this study develops a comparative analysis to provide a state-of-the-art review of the recent attempts towards mitigating the UHI effect in Kuala Lumpur, Singapore, and Hong Kong. Among several available UHI mitigation strategies, this study is limited to the analysis of the environmental impacts of urban vegetation (green roofs, green facades, vertical greeneries and green pavements). Findings reveal that in general, urban greening can significantly mitigate the UHI intensity, both directly and indirectly, resulting in the decrease of global air temperature and mean radiant temperature up to 4 °C and 4.5 °C respectively. Overall, the study develops new practical guidelines, discusses the public benefits and elaborates on the future directions of UHI studies.
format Article
author Aflaki, A.
Mirnezhad, M.
Ghaffarianhoseini, A.
Ghaffarianhoseini, A.
Omrany, H.
Wang, Z. H.
Akbari, H.
author_facet Aflaki, A.
Mirnezhad, M.
Ghaffarianhoseini, A.
Ghaffarianhoseini, A.
Omrany, H.
Wang, Z. H.
Akbari, H.
author_sort Aflaki, A.
title Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
title_short Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
title_full Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
title_fullStr Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
title_full_unstemmed Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong
title_sort urban heat island mitigation strategies: a state-of-the-art review on kuala lumpur, singapore and hong kong
publisher Elsevier Ltd
publishDate 2017
url http://eprints.utm.my/id/eprint/75925/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994745808&doi=10.1016%2fj.cities.2016.09.003&partnerID=40&md5=055ab114a86371c54974c26bcb79cf68
_version_ 1643657198573715456
score 13.2014675