Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation
Applying cutting tool with longer functioning time is a vital issue in machining of the nickel-based super alloys. However, the experimental analysis of this problem is quite expensive. Thus, three-dimensional numerical simulation of tool wear propagation in turning of Inconel 625 super alloy is tak...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
SAGE Publications Ltd
2017
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/75698/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019749958&doi=10.1177%2f1350650116677131&partnerID=40&md5=ac4be49aeb1de4b6604bfbd707a2f2ee |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.75698 |
---|---|
record_format |
eprints |
spelling |
my.utm.756982018-04-27T01:46:07Z http://eprints.utm.my/id/eprint/75698/ Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation Lotfi, M. Ashrafi, H. Amini, S. Akhavan Farid, A. Jahanbakhsh, M. TJ Mechanical engineering and machinery Applying cutting tool with longer functioning time is a vital issue in machining of the nickel-based super alloys. However, the experimental analysis of this problem is quite expensive. Thus, three-dimensional numerical simulation of tool wear propagation in turning of Inconel 625 super alloy is taken into account, in this study. The cutting insert with complex geometry is modeled by using a reverse engineering method. Based on the cutting tool and workpiece material, Usui wear rate model is exerted to estimate the tool wear rate. In the first section, characterization of TiAlN-coated carbide tool, which is suggested by catalogue, on wear resistance is evaluated and then simulation results are validated with experiments. As a result, increment of depth of cut is the most effective factor on the generation of temperature and stresses on the tool faces resulting in wear rate acceleration. In the second section, different commercial coatings with multicompositions are applied in the simulation to find the best performance against wear. Finally, TiCN coating outperformed other coatings in turning of Inconel 625. SAGE Publications Ltd 2017 Article PeerReviewed Lotfi, M. and Ashrafi, H. and Amini, S. and Akhavan Farid, A. and Jahanbakhsh, M. (2017) Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231 (6). pp. 734-744. ISSN 1350-6501 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019749958&doi=10.1177%2f1350650116677131&partnerID=40&md5=ac4be49aeb1de4b6604bfbd707a2f2ee |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Lotfi, M. Ashrafi, H. Amini, S. Akhavan Farid, A. Jahanbakhsh, M. Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation |
description |
Applying cutting tool with longer functioning time is a vital issue in machining of the nickel-based super alloys. However, the experimental analysis of this problem is quite expensive. Thus, three-dimensional numerical simulation of tool wear propagation in turning of Inconel 625 super alloy is taken into account, in this study. The cutting insert with complex geometry is modeled by using a reverse engineering method. Based on the cutting tool and workpiece material, Usui wear rate model is exerted to estimate the tool wear rate. In the first section, characterization of TiAlN-coated carbide tool, which is suggested by catalogue, on wear resistance is evaluated and then simulation results are validated with experiments. As a result, increment of depth of cut is the most effective factor on the generation of temperature and stresses on the tool faces resulting in wear rate acceleration. In the second section, different commercial coatings with multicompositions are applied in the simulation to find the best performance against wear. Finally, TiCN coating outperformed other coatings in turning of Inconel 625. |
format |
Article |
author |
Lotfi, M. Ashrafi, H. Amini, S. Akhavan Farid, A. Jahanbakhsh, M. |
author_facet |
Lotfi, M. Ashrafi, H. Amini, S. Akhavan Farid, A. Jahanbakhsh, M. |
author_sort |
Lotfi, M. |
title |
Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation |
title_short |
Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation |
title_full |
Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation |
title_fullStr |
Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation |
title_full_unstemmed |
Characterization of various coatings on wear suppression in turning of Inconel 625: a three-dimensional numerical simulation |
title_sort |
characterization of various coatings on wear suppression in turning of inconel 625: a three-dimensional numerical simulation |
publisher |
SAGE Publications Ltd |
publishDate |
2017 |
url |
http://eprints.utm.my/id/eprint/75698/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019749958&doi=10.1177%2f1350650116677131&partnerID=40&md5=ac4be49aeb1de4b6604bfbd707a2f2ee |
_version_ |
1643657136019865600 |
score |
13.211869 |