Synthesis and characterization of poly(vinylidene fluoride) membrane containing hydrophobic silica nanoparticles for CO2 absorption from CO2/N2 using membrane contactor

The separation of carbon dioxide from CO2/N2 gas mixture using membrane-absorption technology has been investigated. Poly(vinylidene fluoride) (PVDF) membrane was prepared using phase inversion method with N, N-Dimethylacetamide (DMAc) as the solvent and monoethanolamine (20 wt%) was used as the car...

Full description

Saved in:
Bibliographic Details
Main Authors: Ghaee, A., Ghadimi, A., Sadatnia, B., Ismail, A. F., Mansourpour, Z., Khosravi, M.
Format: Article
Published: Institution of Chemical Engineers 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/75493/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013168530&doi=10.1016%2fj.cherd.2017.01.032&partnerID=40&md5=72b16ccc816a419770867cce466d07b6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The separation of carbon dioxide from CO2/N2 gas mixture using membrane-absorption technology has been investigated. Poly(vinylidene fluoride) (PVDF) membrane was prepared using phase inversion method with N, N-Dimethylacetamide (DMAc) as the solvent and monoethanolamine (20 wt%) was used as the carbon dioxide absorbent. The hydrophobic silica nanoparticles modified with vinyl groups used to raise the hydrophobic character of the prepared polymeric membranes. The chemical structure and hydrophobicity of the silica nanoparticles was studied. The mixed matrix membranes morphology, hydrophobicity, thermal and mechanical properties were investigated. The results showed that the nanoparticles were properly modified with vinyl groups and their contact angles increased from 34 to 131°. Low amount addition of nanoparticles to the polymeric solution caused macrovoid formation, while increasing the nanoparticles loading suppressed macrovoid formation. Carbon dioxide absorption efficiency has been increased by increasing loading of nanoparticles into the membrane because of its smaller pore size and higher hydrophobicity.