Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV

Gender recognition is trivial for a physiotherapist, but it is considered a challenge for computers. The electromyography (EMG) and heart rate variability (HRV) were utilized in this work for gender recognition during exercise using a stepper. The relevant features were extracted and selected. The s...

Full description

Saved in:
Bibliographic Details
Main Authors: Rosli, N. A. I. M., Rahman, M. A. A., Balakrishnan, M., Komeda, T., Mazlan, S. A., Zamzuri, H.
Format: Article
Published: MDPI AG 2017
Subjects:
Online Access:http://eprints.utm.my/id/eprint/75345/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017346611&doi=10.3390%2fapp7040348&partnerID=40&md5=83fc8e1d72303e6af620f222125ce212
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.75345
record_format eprints
spelling my.utm.753452018-03-22T11:03:21Z http://eprints.utm.my/id/eprint/75345/ Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV Rosli, N. A. I. M. Rahman, M. A. A. Balakrishnan, M. Komeda, T. Mazlan, S. A. Zamzuri, H. T Technology (General) Gender recognition is trivial for a physiotherapist, but it is considered a challenge for computers. The electromyography (EMG) and heart rate variability (HRV) were utilized in this work for gender recognition during exercise using a stepper. The relevant features were extracted and selected. The selected features were then fused to automatically predict gender recognition. However, the feature selection for gender classification became a challenge to ensure better accuracy. Thus, in this paper, a feature selection approach based on both the performance and the diversity between the two features from the rank-score characteristic (RSC) function in a combinatorial fusion approach (CFA) (Hsu et al.) was employed. Then, the features from the selected feature sets were fused using a CFA. The results were then compared with other fusion techniques such as naive bayes (NB), decision tree (J48), k-nearest neighbor (KNN) and support vector machine (SVM). Besides, the results were also compared with previous researches in gender recognition. The experimental results showed that the CFA was efficient and effective for feature selection. The fusion method was also able to improve the accuracy of the gender recognition rate. The CFA provides much better gender classification results which is 94.51% compared to Barani's work (90.34%), Nazarloo's work (92.50%), and other classifiers. MDPI AG 2017 Article PeerReviewed Rosli, N. A. I. M. and Rahman, M. A. A. and Balakrishnan, M. and Komeda, T. and Mazlan, S. A. and Zamzuri, H. (2017) Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV. Applied Sciences (Switzerland), 7 (4). ISSN 2076-3417 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017346611&doi=10.3390%2fapp7040348&partnerID=40&md5=83fc8e1d72303e6af620f222125ce212
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic T Technology (General)
spellingShingle T Technology (General)
Rosli, N. A. I. M.
Rahman, M. A. A.
Balakrishnan, M.
Komeda, T.
Mazlan, S. A.
Zamzuri, H.
Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV
description Gender recognition is trivial for a physiotherapist, but it is considered a challenge for computers. The electromyography (EMG) and heart rate variability (HRV) were utilized in this work for gender recognition during exercise using a stepper. The relevant features were extracted and selected. The selected features were then fused to automatically predict gender recognition. However, the feature selection for gender classification became a challenge to ensure better accuracy. Thus, in this paper, a feature selection approach based on both the performance and the diversity between the two features from the rank-score characteristic (RSC) function in a combinatorial fusion approach (CFA) (Hsu et al.) was employed. Then, the features from the selected feature sets were fused using a CFA. The results were then compared with other fusion techniques such as naive bayes (NB), decision tree (J48), k-nearest neighbor (KNN) and support vector machine (SVM). Besides, the results were also compared with previous researches in gender recognition. The experimental results showed that the CFA was efficient and effective for feature selection. The fusion method was also able to improve the accuracy of the gender recognition rate. The CFA provides much better gender classification results which is 94.51% compared to Barani's work (90.34%), Nazarloo's work (92.50%), and other classifiers.
format Article
author Rosli, N. A. I. M.
Rahman, M. A. A.
Balakrishnan, M.
Komeda, T.
Mazlan, S. A.
Zamzuri, H.
author_facet Rosli, N. A. I. M.
Rahman, M. A. A.
Balakrishnan, M.
Komeda, T.
Mazlan, S. A.
Zamzuri, H.
author_sort Rosli, N. A. I. M.
title Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV
title_short Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV
title_full Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV
title_fullStr Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV
title_full_unstemmed Improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of EMG and HRV
title_sort improved gender recognition during stepping activity for rehab application using the combinatorial fusion approach of emg and hrv
publisher MDPI AG
publishDate 2017
url http://eprints.utm.my/id/eprint/75345/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017346611&doi=10.3390%2fapp7040348&partnerID=40&md5=83fc8e1d72303e6af620f222125ce212
_version_ 1643657037278609408
score 13.211869