Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium
In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2017
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/74915/1/NorAthirahMohdZin_AnalysisofHeatTransferforUnsteadyMHD.pdf http://eprints.utm.my/id/eprint/74915/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008420144&doi=10.1016%2fj.rinp.2016.12.032&partnerID=40&md5=8a4e710395a2372710b26525b1aeefc6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.74915 |
---|---|
record_format |
eprints |
spelling |
my.utm.749152018-03-21T00:38:30Z http://eprints.utm.my/id/eprint/74915/ Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium Mohd. Zin, N. A. Khan, I. Shafie, S. Alshomrani, A. S. QA Mathematics In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Elsevier B.V. 2017 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/74915/1/NorAthirahMohdZin_AnalysisofHeatTransferforUnsteadyMHD.pdf Mohd. Zin, N. A. and Khan, I. and Shafie, S. and Alshomrani, A. S. (2017) Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium. Results in Physics, 7 . pp. 288-309. ISSN 2211-3797 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008420144&doi=10.1016%2fj.rinp.2016.12.032&partnerID=40&md5=8a4e710395a2372710b26525b1aeefc6 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Mohd. Zin, N. A. Khan, I. Shafie, S. Alshomrani, A. S. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
description |
In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. |
format |
Article |
author |
Mohd. Zin, N. A. Khan, I. Shafie, S. Alshomrani, A. S. |
author_facet |
Mohd. Zin, N. A. Khan, I. Shafie, S. Alshomrani, A. S. |
author_sort |
Mohd. Zin, N. A. |
title |
Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_short |
Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_full |
Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_fullStr |
Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_full_unstemmed |
Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium |
title_sort |
analysis of heat transfer for unsteady mhd free convection flow of rotating jeffrey nanofluid saturated in a porous medium |
publisher |
Elsevier B.V. |
publishDate |
2017 |
url |
http://eprints.utm.my/id/eprint/74915/1/NorAthirahMohdZin_AnalysisofHeatTransferforUnsteadyMHD.pdf http://eprints.utm.my/id/eprint/74915/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008420144&doi=10.1016%2fj.rinp.2016.12.032&partnerID=40&md5=8a4e710395a2372710b26525b1aeefc6 |
_version_ |
1643656970377363456 |
score |
13.214268 |