A fuzzy logic controller to line starting performance synchronous motor for a crane system using vector control
This paper presents the design process of a synchronous motor of crane system using vector control of line starting [1]. The preliminary design is d-q model armature rotor line start synchronous motor with vector control for decreasing a starting current and torque. The design allows the synchronous...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/74254/1/BirowoBirowo2016_AFuzzyLogicControllertoLineStarting.pdf http://eprints.utm.my/id/eprint/74254/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975068301&doi=10.11113%2fjt.v78.9029&partnerID=40&md5=f7df1295eb6f02ff059ed566c2d3cb08 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the design process of a synchronous motor of crane system using vector control of line starting [1]. The preliminary design is d-q model armature rotor line start synchronous motor with vector control for decreasing a starting current and torque. The design allows the synchronous motor to operate at both starting and synchronous speed. The basic equations for park transformation of the rotor-stator for proposed vector control to synchronous motor are presented [2]. The starting performance of synchronous motor, for example in crane application, requires rapid dynamics and precise regulation; hence the need of direct control is becoming an urgent demand. This type of control providesanindependent vector control of torqueand current, whichis similar to a separatelyexcited synchronous motor and offersa number ofattractivefeatures. Synchronous motorhasahighstartingtorquewhileseparately synchronous motorcanoperate abovethebase low speedinthe line starting current [3]. This paper designs study and highlights the effectiveness of the proposed vector control methods for a line starting performance of synchronous motor model parameter, using a fuzzy logic controller methods both simulation and manufacturers measured experimental data. Asteady state and transient analysis of the synchronous motor is performed belowand abovebase line starting current. |
---|