Estimation of high-dimensional connectivity in FMRI data via subspace autoregressive models
We consider the challenge in estimating effective connectivity of brain networks with a large number of nodes from fMRI data. The classical vector autoregressive (VAR) modeling tends to produce unreliable estimates for large dimensions due to the huge number of parameters. We propose a subspace esti...
Saved in:
Main Authors: | Ting, C. M., Seghouane, A. K., Salleh, S. H. |
---|---|
格式: | Conference or Workshop Item |
出版: |
IEEE Computer Society
2016
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/73097/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987892034&doi=10.1109%2fSSP.2016.7551799&partnerID=40&md5=32b51c62976b05b5c2a2865f1f2a45e3 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Estimation of high-dimensional brain connectivity from FMRI data using factor modeling
由: Shaikh Salleh, Sheikh Hussein, et al.
出版: (2014) -
fMRI hemodynamic response function estimation in autoregressive noise by avoiding the drift
由: Seghouane, A. K., et al.
出版: (2017) -
Estimating effective connectivity from fMRI data using factor-based subspace autoregressive models
由: Ting, Chee-Ming, et al.
出版: (2015) -
Identifying dynamic effective connectivity states in fMRI based on time-varying vector autoregressive models
由: Samdin, S. B., et al.
出版: (2016) -
Is first-order vector autoregressive model optimal for fMRI data?
由: Ting, Chee-Ming, et al.
出版: (2015)