Outlier elimination using granular box regression
A regression method desires to fit the curve on a data set irrespective of outliers. This paper modifies the granular box regression approaches to deal with data sets with outliers. Each approach incorporates a three-stage procedure includes granular box configuration, outlier elimination, and linea...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2016
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/71674/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938199375&doi=10.1016%2fj.inffus.2015.04.001&partnerID=40&md5=dddcdf6c051dc05e017aa4be15e8698d |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.71674 |
---|---|
record_format |
eprints |
spelling |
my.utm.716742017-11-16T06:06:08Z http://eprints.utm.my/id/eprint/71674/ Outlier elimination using granular box regression Reza Mashinchi, M. Selamat, A. Ibrahim, S. Fujita, H. QA76 Computer software A regression method desires to fit the curve on a data set irrespective of outliers. This paper modifies the granular box regression approaches to deal with data sets with outliers. Each approach incorporates a three-stage procedure includes granular box configuration, outlier elimination, and linear regression analysis. The first stage investigates two objective functions each applies different penalty schemes on boxes or instances. The second stage investigates two methods of outlier elimination to, then, perform the linear regression in the third stage. The performance of the proposed granular box regressions are investigated in terms of: volume of boxes, insensitivity of boxes to outliers, elapsed time for box configuration, and error of regression. The proposed approach offers a better linear model, with smaller error, on the given data sets containing varieties of outlier rates. The investigation shows the superiority of applying penalty scheme on instances. Elsevier 2016 Article PeerReviewed Reza Mashinchi, M. and Selamat, A. and Ibrahim, S. and Fujita, H. (2016) Outlier elimination using granular box regression. Information Fusion, 27 . pp. 161-169. ISSN 1566-2535 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938199375&doi=10.1016%2fj.inffus.2015.04.001&partnerID=40&md5=dddcdf6c051dc05e017aa4be15e8698d |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
QA76 Computer software |
spellingShingle |
QA76 Computer software Reza Mashinchi, M. Selamat, A. Ibrahim, S. Fujita, H. Outlier elimination using granular box regression |
description |
A regression method desires to fit the curve on a data set irrespective of outliers. This paper modifies the granular box regression approaches to deal with data sets with outliers. Each approach incorporates a three-stage procedure includes granular box configuration, outlier elimination, and linear regression analysis. The first stage investigates two objective functions each applies different penalty schemes on boxes or instances. The second stage investigates two methods of outlier elimination to, then, perform the linear regression in the third stage. The performance of the proposed granular box regressions are investigated in terms of: volume of boxes, insensitivity of boxes to outliers, elapsed time for box configuration, and error of regression. The proposed approach offers a better linear model, with smaller error, on the given data sets containing varieties of outlier rates. The investigation shows the superiority of applying penalty scheme on instances. |
format |
Article |
author |
Reza Mashinchi, M. Selamat, A. Ibrahim, S. Fujita, H. |
author_facet |
Reza Mashinchi, M. Selamat, A. Ibrahim, S. Fujita, H. |
author_sort |
Reza Mashinchi, M. |
title |
Outlier elimination using granular box regression |
title_short |
Outlier elimination using granular box regression |
title_full |
Outlier elimination using granular box regression |
title_fullStr |
Outlier elimination using granular box regression |
title_full_unstemmed |
Outlier elimination using granular box regression |
title_sort |
outlier elimination using granular box regression |
publisher |
Elsevier |
publishDate |
2016 |
url |
http://eprints.utm.my/id/eprint/71674/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938199375&doi=10.1016%2fj.inffus.2015.04.001&partnerID=40&md5=dddcdf6c051dc05e017aa4be15e8698d |
_version_ |
1643656248952881152 |
score |
13.209306 |