Outlier elimination using granular box regression

A regression method desires to fit the curve on a data set irrespective of outliers. This paper modifies the granular box regression approaches to deal with data sets with outliers. Each approach incorporates a three-stage procedure includes granular box configuration, outlier elimination, and linea...

Full description

Saved in:
Bibliographic Details
Main Authors: Reza Mashinchi, M., Selamat, A., Ibrahim, S., Fujita, H.
Format: Article
Published: Elsevier 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/71674/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938199375&doi=10.1016%2fj.inffus.2015.04.001&partnerID=40&md5=dddcdf6c051dc05e017aa4be15e8698d
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.71674
record_format eprints
spelling my.utm.716742017-11-16T06:06:08Z http://eprints.utm.my/id/eprint/71674/ Outlier elimination using granular box regression Reza Mashinchi, M. Selamat, A. Ibrahim, S. Fujita, H. QA76 Computer software A regression method desires to fit the curve on a data set irrespective of outliers. This paper modifies the granular box regression approaches to deal with data sets with outliers. Each approach incorporates a three-stage procedure includes granular box configuration, outlier elimination, and linear regression analysis. The first stage investigates two objective functions each applies different penalty schemes on boxes or instances. The second stage investigates two methods of outlier elimination to, then, perform the linear regression in the third stage. The performance of the proposed granular box regressions are investigated in terms of: volume of boxes, insensitivity of boxes to outliers, elapsed time for box configuration, and error of regression. The proposed approach offers a better linear model, with smaller error, on the given data sets containing varieties of outlier rates. The investigation shows the superiority of applying penalty scheme on instances. Elsevier 2016 Article PeerReviewed Reza Mashinchi, M. and Selamat, A. and Ibrahim, S. and Fujita, H. (2016) Outlier elimination using granular box regression. Information Fusion, 27 . pp. 161-169. ISSN 1566-2535 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938199375&doi=10.1016%2fj.inffus.2015.04.001&partnerID=40&md5=dddcdf6c051dc05e017aa4be15e8698d
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic QA76 Computer software
spellingShingle QA76 Computer software
Reza Mashinchi, M.
Selamat, A.
Ibrahim, S.
Fujita, H.
Outlier elimination using granular box regression
description A regression method desires to fit the curve on a data set irrespective of outliers. This paper modifies the granular box regression approaches to deal with data sets with outliers. Each approach incorporates a three-stage procedure includes granular box configuration, outlier elimination, and linear regression analysis. The first stage investigates two objective functions each applies different penalty schemes on boxes or instances. The second stage investigates two methods of outlier elimination to, then, perform the linear regression in the third stage. The performance of the proposed granular box regressions are investigated in terms of: volume of boxes, insensitivity of boxes to outliers, elapsed time for box configuration, and error of regression. The proposed approach offers a better linear model, with smaller error, on the given data sets containing varieties of outlier rates. The investigation shows the superiority of applying penalty scheme on instances.
format Article
author Reza Mashinchi, M.
Selamat, A.
Ibrahim, S.
Fujita, H.
author_facet Reza Mashinchi, M.
Selamat, A.
Ibrahim, S.
Fujita, H.
author_sort Reza Mashinchi, M.
title Outlier elimination using granular box regression
title_short Outlier elimination using granular box regression
title_full Outlier elimination using granular box regression
title_fullStr Outlier elimination using granular box regression
title_full_unstemmed Outlier elimination using granular box regression
title_sort outlier elimination using granular box regression
publisher Elsevier
publishDate 2016
url http://eprints.utm.my/id/eprint/71674/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938199375&doi=10.1016%2fj.inffus.2015.04.001&partnerID=40&md5=dddcdf6c051dc05e017aa4be15e8698d
_version_ 1643656248952881152
score 13.209306