Optoelectronic properties of naphtho[2, 1-b:6, 5-b′]difuran derivatives for photovoltaic application: a computational study

Some important optoelectronic properties of naphtho[2,1-b:6,5-b′]difuran (DPNDF) and its two derivatives have been limelighted by applying the density functional theory (DFT). Due to their low cost, high stability and earth abundance, the DPNDF and its derivatives are considered as potential organic...

Full description

Saved in:
Bibliographic Details
Main Authors: Chaudhry, A. R., Ahmed, R., Irfan, A., Mohamad, M., Muhammad, S., Ul Haq, B., Al-Sehemi, A. G., Al-Douri, Y.
Format: Article
Published: Springer Verlag 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/70151/
http://dx.doi.org/10.1007/s00894-016-3121-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Some important optoelectronic properties of naphtho[2,1-b:6,5-b′]difuran (DPNDF) and its two derivatives have been limelighted by applying the density functional theory (DFT). Due to their low cost, high stability and earth abundance, the DPNDF and its derivatives are considered as potential organic semiconductor materials for their optoelectronics applications. Highly proficient derivatives are obtained systematically by attaching –CN (cyanide) to DPNDF at various sites. Our calculations indicate that DPNDF has a wide and direct band gap with an energy gap of 3.157 eV. Whereas the band gaps of its derivatives are found to be decreased by 88 meV for derivative “a” and 300 meV for derivative “b” as a consequence of p orbitals present in C and N atoms in derivative structures. The narrowing of the energy gap and density of states for the derivatives of DPNDF in the present investigation suggest that energy gap can be engineered for desirable optoelectronic applications via derivatives designing. Furthermore, their obtained results for optical parameters such as the dielectric and conductivity functions, reflectivity, refractive index, and the extinction coefficients endorses their aptness for optoelectronic applications.