Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain

Over the last few decades, numerical simulation has fast become an effective research tool in analyzing internal and external fluid flow. Much of the unknowns associated with microscopic bounded and unbounded fluid behavior generally not obtainable via experimental approach can now be explained in d...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd. Ghazali, N., Fa, L. K.
Format: Article
Language:English
Published: Penerbit UTM Press 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/70078/1/NormahMohdGhazali2016_NumericalSimulationofFlowSurroundingaThermoacoustic.pdf
http://eprints.utm.my/id/eprint/70078/
https://www.scopus.com
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.70078
record_format eprints
spelling my.utm.700782017-11-22T00:45:13Z http://eprints.utm.my/id/eprint/70078/ Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain Mohd. Ghazali, N. Fa, L. K. TN Mining engineering. Metallurgy Over the last few decades, numerical simulation has fast become an effective research tool in analyzing internal and external fluid flow. Much of the unknowns associated with microscopic bounded and unbounded fluid behavior generally not obtainable via experimental approach can now be explained in details with computational fluid dynamics modeling. This has much assist designers and engineers in developing better engineering designs. However, the choice of the computational domain selected plays an important role in exhibiting the correct flow patterns associated with changes in certain parameters. This research looked at the outcomes when two computational domains were chosen to represent a system of parallel stack plates in a thermoacoustic resonator. Since the stack region is considered the “heart” of the system, accurate modeling is crucial in understanding the complex thermoacoustic solid-fluid interactions that occur. Results showed that although the general flow pattern and trends have been produced with the single and double plate stack system, details of a neighboring solid wall do affect the developments of vortices in the stack region. The symmetric assumption in the computational domain may result in the absence of details that could generate an incomplete explanation of the patterns observed such as shown in this study. This is significant in understanding the solid-fluid interactions that is thermoacoustic phenomena. Penerbit UTM Press 2016 Article PeerReviewed application/pdf en http://eprints.utm.my/id/eprint/70078/1/NormahMohdGhazali2016_NumericalSimulationofFlowSurroundingaThermoacoustic.pdf Mohd. Ghazali, N. and Fa, L. K. (2016) Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain. Jurnal Teknologi, 78 (8-4). pp. 119-125. ISSN 0127-9696 https://www.scopus.com DOI:
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TN Mining engineering. Metallurgy
spellingShingle TN Mining engineering. Metallurgy
Mohd. Ghazali, N.
Fa, L. K.
Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
description Over the last few decades, numerical simulation has fast become an effective research tool in analyzing internal and external fluid flow. Much of the unknowns associated with microscopic bounded and unbounded fluid behavior generally not obtainable via experimental approach can now be explained in details with computational fluid dynamics modeling. This has much assist designers and engineers in developing better engineering designs. However, the choice of the computational domain selected plays an important role in exhibiting the correct flow patterns associated with changes in certain parameters. This research looked at the outcomes when two computational domains were chosen to represent a system of parallel stack plates in a thermoacoustic resonator. Since the stack region is considered the “heart” of the system, accurate modeling is crucial in understanding the complex thermoacoustic solid-fluid interactions that occur. Results showed that although the general flow pattern and trends have been produced with the single and double plate stack system, details of a neighboring solid wall do affect the developments of vortices in the stack region. The symmetric assumption in the computational domain may result in the absence of details that could generate an incomplete explanation of the patterns observed such as shown in this study. This is significant in understanding the solid-fluid interactions that is thermoacoustic phenomena.
format Article
author Mohd. Ghazali, N.
Fa, L. K.
author_facet Mohd. Ghazali, N.
Fa, L. K.
author_sort Mohd. Ghazali, N.
title Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
title_short Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
title_full Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
title_fullStr Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
title_full_unstemmed Numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
title_sort numerical simulation of flow surrounding a thermoacoustic stack:single-stack against double-stack plate domain
publisher Penerbit UTM Press
publishDate 2016
url http://eprints.utm.my/id/eprint/70078/1/NormahMohdGhazali2016_NumericalSimulationofFlowSurroundingaThermoacoustic.pdf
http://eprints.utm.my/id/eprint/70078/
https://www.scopus.com
_version_ 1643656089131024384
score 13.160551