Effect of electrical field resonances due to perturbation slit tunnel junction for a potential solar energy collector at 10 micrometer radiation

A potential solar energy collector is proposed. The design is a new rectangular antenna with perturbation slit tunnel junction that exhibits highly confined electrical-field at 10 micrometer radiation. The configuration operates at the centre resonant for thermal radiation spectrum. The vital idea b...

Full description

Saved in:
Bibliographic Details
Main Authors: Esa, Mazlina, Ismail, Mohd. Khairul Hisham, Murad, Noor Asniza, Nik Abd Malik, Nik Noordini, Mohd. Yusoff, Mohd. Fairus, Hamzah, Shipun Anuar
Format: Conference or Workshop Item
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/61173/
https://www.scientific.net/AMM.781.458
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A potential solar energy collector is proposed. The design is a new rectangular antenna with perturbation slit tunnel junction that exhibits highly confined electrical-field at 10 micrometer radiation. The configuration operates at the centre resonant for thermal radiation spectrum. The vital idea behind this proposed design is to trap and guide out the electrical-field using slit tunnel into a convenient location for potential solar energy collector. The trapping electrical field achieved is enhanced up to 110 V/m with an excitation plane wave of 1 V/m. Meanwhile, a wider half-field strength bandwidth up to 13.5 THz is successfully excited to cover most of the thermal radiation spectrum. By the introduction of a tunnel junction of 0.1 micrometer for diode integration, the electrical field magnitude slightly decreased to 98.3 V/m with half-field strength bandwidth of 12 THz. Furthermore, the promising results generated by finite integration technique (FIT) method offers the proposed design to be a potential candidate for energy harvesting devices at 10 micrometer thermal radiation of the sun.