Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip

Network-on-chip (NoC) is an on-chip communication network that allows parallel communication between all cores to improve inter-core performance. Wireless NoC (WiNoC) introduces long-range and high bandwidth radio frequency (RF) interconnects that can possibly reduce the multi-hop communication of t...

Full description

Saved in:
Bibliographic Details
Main Author: Rusli, Mohd. Shahrizal
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.utm.my/id/eprint/60717/1/MohdShahrizalRusliPFKE2016.pdf
http://eprints.utm.my/id/eprint/60717/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:94079
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.60717
record_format eprints
spelling my.utm.607172017-10-08T07:51:23Z http://eprints.utm.my/id/eprint/60717/ Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip Rusli, Mohd. Shahrizal TK Electrical engineering. Electronics Nuclear engineering Network-on-chip (NoC) is an on-chip communication network that allows parallel communication between all cores to improve inter-core performance. Wireless NoC (WiNoC) introduces long-range and high bandwidth radio frequency (RF) interconnects that can possibly reduce the multi-hop communication of the planar metal interconnects in conventional NoC platforms. In WiNoC, RF transceivers account for a significant power consumption, particularly its transmitter, out of its total communication energy. CurrentWiNoC architectures employ constant maximum transmitting power for communicating radio hubs regardless of physical location of the receiver radio hubs. Besides, high transmission power consumption in WiNoC with constant maximum power suffers from significant energy and load imbalance among RF transceivers which lead to hotspot formation, thus affecting the reliability of the onchip network system. There are two main objectives covered by this thesis. Firstly, this work proposes a reconfigurable transmitting power control scheme that, by using bit error rate (BER) estimation obtained at the receiver’s side, dynamically calibrates the transmitting power level needed for communication between the source and destination radio hubs. The proposed scheme achieves significant total system energy reduction by about 40% with an average performance degradation of 3% and with no impact on throughput. The proposed design utilizes a small fraction of both area and power overheads (about 0.1%) out of total transceiver properties. The proposed technique is generic and can be applied to any WiNoC architecture for improving its energy efficiency with a negligible overhead in terms of silicon area. Secondly, an energyaware adaptive packet relocator scheme has been proposed. Based on transmission energy consumption and predefined energy threshold, packets are routed to adjacent transmitter for communication with receiver radio hub, with an aim to balance energy distribution in WiNoC. The proposed strategy alone achieves total communication energy savings of about 8%. A joint scheme of the reconfigurable transmitting power management and energy-aware adaptive packet relocator is also introduced. The scheme consistently results in an energy savings of 30% with minimal performance degradation. 2016-06 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/60717/1/MohdShahrizalRusliPFKE2016.pdf Rusli, Mohd. Shahrizal (2016) Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip. PhD thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:94079
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Rusli, Mohd. Shahrizal
Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
description Network-on-chip (NoC) is an on-chip communication network that allows parallel communication between all cores to improve inter-core performance. Wireless NoC (WiNoC) introduces long-range and high bandwidth radio frequency (RF) interconnects that can possibly reduce the multi-hop communication of the planar metal interconnects in conventional NoC platforms. In WiNoC, RF transceivers account for a significant power consumption, particularly its transmitter, out of its total communication energy. CurrentWiNoC architectures employ constant maximum transmitting power for communicating radio hubs regardless of physical location of the receiver radio hubs. Besides, high transmission power consumption in WiNoC with constant maximum power suffers from significant energy and load imbalance among RF transceivers which lead to hotspot formation, thus affecting the reliability of the onchip network system. There are two main objectives covered by this thesis. Firstly, this work proposes a reconfigurable transmitting power control scheme that, by using bit error rate (BER) estimation obtained at the receiver’s side, dynamically calibrates the transmitting power level needed for communication between the source and destination radio hubs. The proposed scheme achieves significant total system energy reduction by about 40% with an average performance degradation of 3% and with no impact on throughput. The proposed design utilizes a small fraction of both area and power overheads (about 0.1%) out of total transceiver properties. The proposed technique is generic and can be applied to any WiNoC architecture for improving its energy efficiency with a negligible overhead in terms of silicon area. Secondly, an energyaware adaptive packet relocator scheme has been proposed. Based on transmission energy consumption and predefined energy threshold, packets are routed to adjacent transmitter for communication with receiver radio hub, with an aim to balance energy distribution in WiNoC. The proposed strategy alone achieves total communication energy savings of about 8%. A joint scheme of the reconfigurable transmitting power management and energy-aware adaptive packet relocator is also introduced. The scheme consistently results in an energy savings of 30% with minimal performance degradation.
format Thesis
author Rusli, Mohd. Shahrizal
author_facet Rusli, Mohd. Shahrizal
author_sort Rusli, Mohd. Shahrizal
title Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
title_short Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
title_full Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
title_fullStr Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
title_full_unstemmed Run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
title_sort run-time transmission power reconfiguration and adaptive packet relocation in wireless network-on-chip
publishDate 2016
url http://eprints.utm.my/id/eprint/60717/1/MohdShahrizalRusliPFKE2016.pdf
http://eprints.utm.my/id/eprint/60717/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:94079
_version_ 1643654954629464064
score 13.160551