Protein sequences classification based on weighting scheme
We present a new technique to recognize remote protein homologies that rely on combining probabilistic modeling and supervised learning in high-dimensional feature spaces. The main novelty of our technique is the method of constructing feature vectors using Hidden Markov Model and the combination of...
保存先:
主要な著者: | Zaki, N. M., Deris, Safaai, Md Illias, Rosli |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Assumption University
2005
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/5576/1/N.M.Zaki2005_ProteinSequencesClassificationBasedOn.pdf http://eprints.utm.my/id/eprint/5576/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Application of string kernels in protein sequence classification
著者:: Zaki, Nazar M., 等
出版事項: (2005) -
Assignment of protein sequence to functional family using neural network & Dempster-Shafer theory
著者:: Zaki, N. M., 等
出版事項: (2003) -
Protein secondary structure prediction from amino acid sequence using artificial intelligence technique
著者:: Deris, Safaai, 等
出版事項: (2005) -
A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences
著者:: M. Othman, Razib, 等
出版事項: (2008) -
Statistical Based Encoding and Feature Selection Algorithms for the Classification of Protein Sequences
著者:: Iqbal, Muhammad Javed
出版事項: (2015)