Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
This paper presents a new hybrid artificial neural network (ANN) optimized by imperialist competitive algorithm (ICA) to predict peak particle velocity (PPV) resulting from quarry blasting. For this purpose, 95 blasting works were precisely monitored in a granite quarry site in Malaysia and PPV valu...
محفوظ في:
المؤلفون الرئيسيون: | Hassani, Mohsen, Armaghani, Danial Jahed, Marto, Aminaton, Mohamad, Edy Tonnizam |
---|---|
التنسيق: | مقال |
منشور في: |
Springer
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/55534/ http://dx.doi.org/10.1007/s10064-014-0657-x |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach
بواسطة: Hajihassani, Mohsen, وآخرون
منشور في: (2015) -
Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
بواسطة: Armaghani, Danial Jahed, وآخرون
منشور في: (2014) -
Application of two intelligent systems in predicting environmental impacts of quarry blasting
بواسطة: Armaghani, Danial Jahed, وآخرون
منشور في: (2015) -
Simulation of blasting induced ground vibration by using artificial neural network
بواسطة: Mohamad, Edy Tonnizam, وآخرون
منشور في: (2012) -
Simulation of blasting-induced air overpressure by means of artificial neural networks
بواسطة: Mohamad, Edy Tonnizam, وآخرون
منشور في: (2012)