Preparation and antifouling properties of PVDF ultrafiltration membranes with polyaniline (PANI) nanofibers and hydrolysed PSMA (H-PSMA) as additives

Polyaniline (PANI) nanofibers were used as hydrophilic additives to study their effect on the performance of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes. PVDF UP membranes were prepared by the phase inversion method with hydrolyzed polystyrene-co-maleic anhydride (H-PSMA) and PANI...

Full description

Saved in:
Bibliographic Details
Main Authors: Pereira, Valeen Rashmi, Isloor, Arun M., Bhat, Udaya, Ismail, Ahmad Fauzi
Format: Article
Published: 2014
Subjects:
Online Access:http://eprints.utm.my/id/eprint/54578/
http://dx.doi.org/10.1016/j.desal.2014.08.002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyaniline (PANI) nanofibers were used as hydrophilic additives to study their effect on the performance of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes. PVDF UP membranes were prepared by the phase inversion method with hydrolyzed polystyrene-co-maleic anhydride (H-PSMA) and PANI nanofibers as additives. PANI nanofibers were synthesized by rapid mixing reaction and were used as a hydrophilic modifying agent with varying concentrations (0-1.5 wt.%) in the membranes. The synthesized PANI nanofibers were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. Hydrolyzed PSMA was prepared by the hydrolysis of PSMA and was used as a novel pore forming additive. The addition of PANI nanofibers into the membranes increased the membrane hydrophilicity, porosity, water uptake and permeability. The membranes also showed good antifouling nature during BSA (bovine serum albumin) filtration when compared to the pristine membrane without PANI nanofibers. Membrane with 1.0 wt.% PANI content showed highest permeability among the synthesized membranes. The membrane having highest permeability was subjected to heavy metal ion rejection which showed high rejection of 98.52% and 9738% for heavy metal ions Pb2+ and Cd2+ respectively.