Evaluating ARIMA-neural network hybrid model performance in forecasting stationary timeseries

Demand prediction is one of most sophisticated steps in planning and investments. Although many studies are conducted to find the appropriate forecasting models, dynamic nature of forecasted parameters and their effecting factors are apparent evidences for continuous researches. ARIMA, Artificial Ne...

詳細記述

保存先:
書誌詳細
主要な著者: Seyedi, Seyed Navid, Rezvan, Pouyan, Akbarnatajbisheh, Saeed, Syed Hassan, Syed Ahmad Helmi
フォーマット: 論文
言語:English
出版事項: Trans Tech Publications, Switzerland 2014
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/52746/1/SyedAhmadHelmi2014_EvaluatingARIMA-neuralnetwork.pdf
http://eprints.utm.my/id/eprint/52746/
https://dx.doi.org/10.4028/www.scientific.net/AMR.845.510
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!