Combined design and load shifting for distributed energy system

Renewable distributed energy generation (DEG) system plays an important role in future power developments and is one of the options to reduce energy consumption. It is envisaged that energy efficiency of DEG systems can be improved via load shifting (LS). This study proposed a heuristic-based numeri...

Full description

Saved in:
Bibliographic Details
Main Authors: Ho, Wai Shin, Hashim, Haslenda, Lim, Jeng Shiun
Format: Article
Published: Springer-Verlag Berlin Heidelberg 2013
Subjects:
Online Access:http://eprints.utm.my/id/eprint/50354/
http://dx.doi.org/10.1007/s10098-013-0617-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Renewable distributed energy generation (DEG) system plays an important role in future power developments and is one of the options to reduce energy consumption. It is envisaged that energy efficiency of DEG systems can be improved via load shifting (LS). This study proposed a heuristic-based numerical approach to perform LS analysis on renewable stand-alone DEG systems. The technique is an extension from a method known as the Electric System Cascade Analysis (ESCA). The new technique, which focuses on efficient electricity utilisation is able to determine the optimal: (i) load profiles, (ii) capacity of power generator, (iii) capacity and power of energy storage (ES) and (iv) charging/discharging schedule of ES. The stage-wise technique allows user to compare and determine the optimal design in a flexible way while having a better understanding of the selection of options. The application of ESCA-LS on a case study revealed that after incorporation of direct LS (load manipulation) in addition to LS by ES (supply manipulation), the power generators and ES capacity can be further reduced. While reduction of 3.1 % for solar-PV installation area and 3.9 % for biomass power generator is recorded, ES power-related capacity and energy-related capacity managed a higher reduction of up to 19.0 and 13.2 % for the main case study.