Implementation of genetic algorithm in model identification of box-jenkins methodology

During the past several decades, a considerable amount of studies have been carried out on time series and in particular the Box-Jenkins (BJ) method. As with all techniques of statistical analysis, the conclusions of time series analysis are critically dependent on the assumptions underlying the ana...

Full description

Saved in:
Bibliographic Details
Main Author: Md. Maarof, Mohd. Zulariffin
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.utm.my/id/eprint/47921/25/MohdZulariffinMdMaarofMFS2013.pdf
http://eprints.utm.my/id/eprint/47921/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.47921
record_format eprints
spelling my.utm.479212017-07-06T01:49:47Z http://eprints.utm.my/id/eprint/47921/ Implementation of genetic algorithm in model identification of box-jenkins methodology Md. Maarof, Mohd. Zulariffin QA Mathematics During the past several decades, a considerable amount of studies have been carried out on time series and in particular the Box-Jenkins (BJ) method. As with all techniques of statistical analysis, the conclusions of time series analysis are critically dependent on the assumptions underlying the analysis and BJ is a commonly used forecasting method that can yield highly accurate forecasts for certain types of data. Genetic Algorithm (GA) is a heuristic method of optimization. This study presents the study on developing an extrapolative BJ model with the use of GA method to produce forecasting models using time series data. BJ method has a cycle of four phases, the data transformation phase for model identification, parameter estimation, model diagnostic checking or validation, and finally producing the forecast. Although many researchers and practitioners have concentrated in the parameter estimation part of BJ model, the most crucial stage in building the model is in the data transformation and model identification where any false identification will lead to assuming a wrong model and will increase in the cost of reidentification. Hence, using GA a subset of artificial intelligence methods was introduced into the process of BJ to solve the problem in the model identification and parameter estimation phase. The data used in this study are the monthly data of international tourists arrival into Malaysia from 1990 to 2011. This is a case study in the implementation of GA-BJ model. The result from this study may be divided into two main parts, namely the result for the in-sample data (fitted model) and outsample data (forecast model). The analysis shows that the out-sample values using GA-BJ model gives better forecast accuracy than the out-sample values for BJ model. This shows that the combination of BJ and GA methods gives a more accurate model than using a single method for forecasting. This study concludes that GA method can be an alternative way in identifying the right order of component in BJ model. 2013-07 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/47921/25/MohdZulariffinMdMaarofMFS2013.pdf Md. Maarof, Mohd. Zulariffin (2013) Implementation of genetic algorithm in model identification of box-jenkins methodology. Masters thesis, Universiti Teknologi Malaysia, Faculty of Science.
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic QA Mathematics
spellingShingle QA Mathematics
Md. Maarof, Mohd. Zulariffin
Implementation of genetic algorithm in model identification of box-jenkins methodology
description During the past several decades, a considerable amount of studies have been carried out on time series and in particular the Box-Jenkins (BJ) method. As with all techniques of statistical analysis, the conclusions of time series analysis are critically dependent on the assumptions underlying the analysis and BJ is a commonly used forecasting method that can yield highly accurate forecasts for certain types of data. Genetic Algorithm (GA) is a heuristic method of optimization. This study presents the study on developing an extrapolative BJ model with the use of GA method to produce forecasting models using time series data. BJ method has a cycle of four phases, the data transformation phase for model identification, parameter estimation, model diagnostic checking or validation, and finally producing the forecast. Although many researchers and practitioners have concentrated in the parameter estimation part of BJ model, the most crucial stage in building the model is in the data transformation and model identification where any false identification will lead to assuming a wrong model and will increase in the cost of reidentification. Hence, using GA a subset of artificial intelligence methods was introduced into the process of BJ to solve the problem in the model identification and parameter estimation phase. The data used in this study are the monthly data of international tourists arrival into Malaysia from 1990 to 2011. This is a case study in the implementation of GA-BJ model. The result from this study may be divided into two main parts, namely the result for the in-sample data (fitted model) and outsample data (forecast model). The analysis shows that the out-sample values using GA-BJ model gives better forecast accuracy than the out-sample values for BJ model. This shows that the combination of BJ and GA methods gives a more accurate model than using a single method for forecasting. This study concludes that GA method can be an alternative way in identifying the right order of component in BJ model.
format Thesis
author Md. Maarof, Mohd. Zulariffin
author_facet Md. Maarof, Mohd. Zulariffin
author_sort Md. Maarof, Mohd. Zulariffin
title Implementation of genetic algorithm in model identification of box-jenkins methodology
title_short Implementation of genetic algorithm in model identification of box-jenkins methodology
title_full Implementation of genetic algorithm in model identification of box-jenkins methodology
title_fullStr Implementation of genetic algorithm in model identification of box-jenkins methodology
title_full_unstemmed Implementation of genetic algorithm in model identification of box-jenkins methodology
title_sort implementation of genetic algorithm in model identification of box-jenkins methodology
publishDate 2013
url http://eprints.utm.my/id/eprint/47921/25/MohdZulariffinMdMaarofMFS2013.pdf
http://eprints.utm.my/id/eprint/47921/
_version_ 1643652406079127552
score 13.214268