Improved walsh functions algorithm for single phase power components measurement
This paper presents an improved Walsh function (IWF) algorithm for power components measurement in linear and nonlinear, balanced and unbalanced sinusoidal load system. It takes advantage of the Walsh Functions’ simple procedure to develop an algorithm to determine the active, reactive and distortio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Asean Research Republic Network
2012
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/47088/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.47088 |
---|---|
record_format |
eprints |
spelling |
my.utm.470882019-03-31T08:31:41Z http://eprints.utm.my/id/eprint/47088/ Improved walsh functions algorithm for single phase power components measurement Aliyu, Garba Abd. Khalid, Saifulnizam Mustafa, Mohd. Wazir Usman, Jafar TA Engineering (General). Civil engineering (General) This paper presents an improved Walsh function (IWF) algorithm for power components measurement in linear and nonlinear, balanced and unbalanced sinusoidal load system. It takes advantage of the Walsh Functions’ simple procedure to develop an algorithm to determine the active, reactive and distortion powers. The increasing use of non-linear loads causes distortion of the power supply system leading to voltage and current waveforms to become non-stationary and non-sinusoidal. As a result measurement using the IEEE standard 1459-2000 which is based on fast Fourier transform FFT is no longer realistic in non-sinusoidal load condition due to its sensitivity to the spectral leakage phenomenon. The proposed Improved Walsh function algorithm which has the features of being simple, and having high accuracy rate for measurement of both sinusoidal and non-sinusoidal signals was tested using a model created on Matlab 2011. The results were compared with the FFT approach and Wavelet transform technique and it showed that the algorithm has the potential to effectively determine the active and reactive powers of a network under different distortion load conditions better than the FFT. The algorithm is computationally less cumbersome when compared with the Wavelet transform. Asean Research Republic Network 2012 Article PeerReviewed Aliyu, Garba and Abd. Khalid, Saifulnizam and Mustafa, Mohd. Wazir and Usman, Jafar (2012) Improved walsh functions algorithm for single phase power components measurement. ARPN Journal of Engineering and Applied Sciences, 7 (12). pp. 1628-1636. ISSN 1819-6608 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TA Engineering (General). Civil engineering (General) |
spellingShingle |
TA Engineering (General). Civil engineering (General) Aliyu, Garba Abd. Khalid, Saifulnizam Mustafa, Mohd. Wazir Usman, Jafar Improved walsh functions algorithm for single phase power components measurement |
description |
This paper presents an improved Walsh function (IWF) algorithm for power components measurement in linear and nonlinear, balanced and unbalanced sinusoidal load system. It takes advantage of the Walsh Functions’ simple procedure to develop an algorithm to determine the active, reactive and distortion powers. The increasing use of non-linear loads causes distortion of the power supply system leading to voltage and current waveforms to become non-stationary and non-sinusoidal. As a result measurement using the IEEE standard 1459-2000 which is based on fast Fourier transform FFT is no longer realistic in non-sinusoidal load condition due to its sensitivity to the spectral leakage phenomenon. The proposed Improved Walsh function algorithm which has the features of being simple, and having high accuracy rate for measurement of both sinusoidal and non-sinusoidal signals was tested using a model created on Matlab 2011. The results were compared with the FFT approach and Wavelet transform technique and it showed that the algorithm has the potential to effectively determine the active and reactive powers of a network under different distortion load conditions better than the FFT. The algorithm is computationally less cumbersome when compared with the Wavelet transform. |
format |
Article |
author |
Aliyu, Garba Abd. Khalid, Saifulnizam Mustafa, Mohd. Wazir Usman, Jafar |
author_facet |
Aliyu, Garba Abd. Khalid, Saifulnizam Mustafa, Mohd. Wazir Usman, Jafar |
author_sort |
Aliyu, Garba |
title |
Improved walsh functions algorithm for single phase power components measurement |
title_short |
Improved walsh functions algorithm for single phase power components measurement |
title_full |
Improved walsh functions algorithm for single phase power components measurement |
title_fullStr |
Improved walsh functions algorithm for single phase power components measurement |
title_full_unstemmed |
Improved walsh functions algorithm for single phase power components measurement |
title_sort |
improved walsh functions algorithm for single phase power components measurement |
publisher |
Asean Research Republic Network |
publishDate |
2012 |
url |
http://eprints.utm.my/id/eprint/47088/ |
_version_ |
1643652230456279040 |
score |
13.209306 |