Bitumen modification using oil palm fruit ash for stone mastic asphalt

The objective of this study was to investigate the feasibility of using oil palm fruit ash (OPFA) as a bitumen modifier, to formulate the mix between OPFA and bitumen as a new binder with better physical and mechanical properties, and to evaluate the use of OPFA-modified bitumen (OPFA-MB) as a binde...

Full description

Saved in:
Bibliographic Details
Main Author: Rusbintardjo, Gatot
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.utm.my/id/eprint/36728/1/GatotRusbintardjoPFKA2011.pdf
http://eprints.utm.my/id/eprint/36728/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.36728
record_format eprints
spelling my.utm.367282018-05-27T08:14:14Z http://eprints.utm.my/id/eprint/36728/ Bitumen modification using oil palm fruit ash for stone mastic asphalt Rusbintardjo, Gatot TA Engineering (General). Civil engineering (General) The objective of this study was to investigate the feasibility of using oil palm fruit ash (OPFA) as a bitumen modifier, to formulate the mix between OPFA and bitumen as a new binder with better physical and mechanical properties, and to evaluate the use of OPFA-modified bitumen (OPFA-MB) as a binder of stone mastic asphalt (SMA). In this study two sources of bitumen, bitumen B-1 and bitumen B-2 each had penetration grade 80/100 were modified by using OPFA. The bitumen was mixed with 2.5%, 5%, 7.5%, 10%, 12.5%, and 15% OPFA by weight of the bitumen at mixing temperature 160°C, mixing time 60 minutes, and mixing stirring speed 800 revolution per minute. There were two types of OPFA, Fine and Coarse-OPFA. Fine- OPFA was OPFA which had uniform particle size 75µm, and Coarse-OPFA was OPFA which had graded particle with maximum grains size 600µm. The bitumen mixed with OPFA was called OPFA-modified bitumen (OPFA-MB). There were four types of OPFA-MB namely Fine-OPFA-MB1, Coarse-OPFA-MB1, Fine- OPFA-MB2, and Coarse-OPFA-MB2. Each type of OPFA-MB had six OPFA content. For all of OPFA-MB penetration test at 25°C, softening point test, and viscosity test at 60°C and 135°C were conducted to determine penetration index (PI) and penetration-viscosity number (PVN). The results show that all OPFA-MB were not susceptible to the changes of temperature. Rheology test using dynamic shear rheometer (DSR), bending beam rheometer (BBR), and direct tension tester (DTT) show that OPFA-MB with the content of fine-OPFA 5%, 2, 5%, and 10% can withstand rutting at a temperature of 70°C, withstand fatigue cracking at a temperature of 20°C, and resist to thermal cracking at a temperature of -15°C. Using in stone mastic asphalt (SMA-14) mixtures resulted in higher Marshall stability than the minimum specification requirements. Resilient modulus, creep, and wheel tracking rutting tests show that OPFA-MB can strengthen SMA-14 mixtures. Static immersion test, boiling water and drain-down test show that OPFA-MB has good adhesion to bind aggregate. Based on penetration value and the results of rheology testing, OPFA-MB can be categorized as binder penetration grade 60/700 and Superpave bitumen grade PG 70 – 16. Overall test results suggest that OPFA is feasible to be used as modifier of the bitumen, and as a binder for stone mastic asphalt. 2011-03 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/36728/1/GatotRusbintardjoPFKA2011.pdf Rusbintardjo, Gatot (2011) Bitumen modification using oil palm fruit ash for stone mastic asphalt. PhD thesis, Universiti Teknologi Malaysia, Faculty of Civil Engineering.
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
Rusbintardjo, Gatot
Bitumen modification using oil palm fruit ash for stone mastic asphalt
description The objective of this study was to investigate the feasibility of using oil palm fruit ash (OPFA) as a bitumen modifier, to formulate the mix between OPFA and bitumen as a new binder with better physical and mechanical properties, and to evaluate the use of OPFA-modified bitumen (OPFA-MB) as a binder of stone mastic asphalt (SMA). In this study two sources of bitumen, bitumen B-1 and bitumen B-2 each had penetration grade 80/100 were modified by using OPFA. The bitumen was mixed with 2.5%, 5%, 7.5%, 10%, 12.5%, and 15% OPFA by weight of the bitumen at mixing temperature 160°C, mixing time 60 minutes, and mixing stirring speed 800 revolution per minute. There were two types of OPFA, Fine and Coarse-OPFA. Fine- OPFA was OPFA which had uniform particle size 75µm, and Coarse-OPFA was OPFA which had graded particle with maximum grains size 600µm. The bitumen mixed with OPFA was called OPFA-modified bitumen (OPFA-MB). There were four types of OPFA-MB namely Fine-OPFA-MB1, Coarse-OPFA-MB1, Fine- OPFA-MB2, and Coarse-OPFA-MB2. Each type of OPFA-MB had six OPFA content. For all of OPFA-MB penetration test at 25°C, softening point test, and viscosity test at 60°C and 135°C were conducted to determine penetration index (PI) and penetration-viscosity number (PVN). The results show that all OPFA-MB were not susceptible to the changes of temperature. Rheology test using dynamic shear rheometer (DSR), bending beam rheometer (BBR), and direct tension tester (DTT) show that OPFA-MB with the content of fine-OPFA 5%, 2, 5%, and 10% can withstand rutting at a temperature of 70°C, withstand fatigue cracking at a temperature of 20°C, and resist to thermal cracking at a temperature of -15°C. Using in stone mastic asphalt (SMA-14) mixtures resulted in higher Marshall stability than the minimum specification requirements. Resilient modulus, creep, and wheel tracking rutting tests show that OPFA-MB can strengthen SMA-14 mixtures. Static immersion test, boiling water and drain-down test show that OPFA-MB has good adhesion to bind aggregate. Based on penetration value and the results of rheology testing, OPFA-MB can be categorized as binder penetration grade 60/700 and Superpave bitumen grade PG 70 – 16. Overall test results suggest that OPFA is feasible to be used as modifier of the bitumen, and as a binder for stone mastic asphalt.
format Thesis
author Rusbintardjo, Gatot
author_facet Rusbintardjo, Gatot
author_sort Rusbintardjo, Gatot
title Bitumen modification using oil palm fruit ash for stone mastic asphalt
title_short Bitumen modification using oil palm fruit ash for stone mastic asphalt
title_full Bitumen modification using oil palm fruit ash for stone mastic asphalt
title_fullStr Bitumen modification using oil palm fruit ash for stone mastic asphalt
title_full_unstemmed Bitumen modification using oil palm fruit ash for stone mastic asphalt
title_sort bitumen modification using oil palm fruit ash for stone mastic asphalt
publishDate 2011
url http://eprints.utm.my/id/eprint/36728/1/GatotRusbintardjoPFKA2011.pdf
http://eprints.utm.my/id/eprint/36728/
_version_ 1643650009078431744
score 13.211869