Streamflow forecasting using least-squares support vector machines
This paper investigates the ability of a least-squares support vector machine (LSSVM) model to improve the accuracy of streamflow forecasting. Cross-validation and grid-search methods are used to automatically determine the LSSVM parameters in the forecasting process. To assess the effectiveness of...
Saved in:
Main Authors: | , |
---|---|
格式: | Article |
语言: | English |
出版: |
Taylor & Francis
2012
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/33550/1/AniShabri2012_StreamflowForecastingusingLeastSquares.pdf http://eprints.utm.my/id/eprint/33550/ http://dx.doi.org/10.1080/02626667.2012.714468 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|