Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process.
Extensive research has been conducted to address the growing global demand for copper by exploring effective methods of extraction and recovery across various industries. The emulsion liquid membrane (ELM) has emerged as a viable option for efficiently extracting and recovering metals from waste sol...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/108573/1/IzzatNaimShamsulKahar2023_CopperExtractionUsingLIX84asaMobile.pdf http://eprints.utm.my/108573/ http://dx.doi.org/10.11113/amst.v27n3.275 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.108573 |
---|---|
record_format |
eprints |
spelling |
my.utm.1085732024-11-17T09:56:15Z http://eprints.utm.my/108573/ Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. Shamsul Kahara, Izzat Naim Alib, Ahmad Syuhaib Othmana, Norasikin Mohamed Noaha, Norul Fatiha Suliman, Sazmin Sufi TP Chemical technology Extensive research has been conducted to address the growing global demand for copper by exploring effective methods of extraction and recovery across various industries. The emulsion liquid membrane (ELM) has emerged as a viable option for efficiently extracting and recovering metals from waste solutions. Due to its advantageous features, the extraction and recovery of copper from a simulated copper solution was investigated. In the ELM, various parameters can affect the stability and efficiency of copper extraction which include agitation speed, treat ratio (TR), stripping agent, and carrier concentration. However, certain parameters such as homogenizer speed, emulsification time, surfactant concentration, extraction time, and pH of the simulated feed solution were kept constant in this study. The most favourable parameters for achieving maximum copper extraction and recovery were determined such as TR of 1:3, agitation speed (250 rpm), LIX 84 (0.2 M) in kerosene as the carrier, and H2SO4 (0.5 M) as the stripping agent. Using these conditions, approximately 74% of the copper was extracted while 37% was recovered with an acceptable ELM stability indicated by a 20% membrane swelling. This research demonstrates the significant potential of the ELM process for extracting copper from wastewater generated by various industries. Penerbit UTM Press 2023-11-20 Article PeerReviewed application/pdf en http://eprints.utm.my/108573/1/IzzatNaimShamsulKahar2023_CopperExtractionUsingLIX84asaMobile.pdf Shamsul Kahara, Izzat Naim and Alib, Ahmad Syuhaib and Othmana, Norasikin and Mohamed Noaha, Norul Fatiha and Suliman, Sazmin Sufi (2023) Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. Journal of Applied Membrane Science & Technology, 27 (3). pp. 69-80. ISSN 2600-9226 http://dx.doi.org/10.11113/amst.v27n3.275 DOI:10.11113/amst.v27n3.275 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Shamsul Kahara, Izzat Naim Alib, Ahmad Syuhaib Othmana, Norasikin Mohamed Noaha, Norul Fatiha Suliman, Sazmin Sufi Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. |
description |
Extensive research has been conducted to address the growing global demand for copper by exploring effective methods of extraction and recovery across various industries. The emulsion liquid membrane (ELM) has emerged as a viable option for efficiently extracting and recovering metals from waste solutions. Due to its advantageous features, the extraction and recovery of copper from a simulated copper solution was investigated. In the ELM, various parameters can affect the stability and efficiency of copper extraction which include agitation speed, treat ratio (TR), stripping agent, and carrier concentration. However, certain parameters such as homogenizer speed, emulsification time, surfactant concentration, extraction time, and pH of the simulated feed solution were kept constant in this study. The most favourable parameters for achieving maximum copper extraction and recovery were determined such as TR of 1:3, agitation speed (250 rpm), LIX 84 (0.2 M) in kerosene as the carrier, and H2SO4 (0.5 M) as the stripping agent. Using these conditions, approximately 74% of the copper was extracted while 37% was recovered with an acceptable ELM stability indicated by a 20% membrane swelling. This research demonstrates the significant potential of the ELM process for extracting copper from wastewater generated by various industries. |
format |
Article |
author |
Shamsul Kahara, Izzat Naim Alib, Ahmad Syuhaib Othmana, Norasikin Mohamed Noaha, Norul Fatiha Suliman, Sazmin Sufi |
author_facet |
Shamsul Kahara, Izzat Naim Alib, Ahmad Syuhaib Othmana, Norasikin Mohamed Noaha, Norul Fatiha Suliman, Sazmin Sufi |
author_sort |
Shamsul Kahara, Izzat Naim |
title |
Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. |
title_short |
Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. |
title_full |
Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. |
title_fullStr |
Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. |
title_full_unstemmed |
Copper extraction using LIX 84 as a mobile carrier in the emulsion liquid membrane process. |
title_sort |
copper extraction using lix 84 as a mobile carrier in the emulsion liquid membrane process. |
publisher |
Penerbit UTM Press |
publishDate |
2023 |
url |
http://eprints.utm.my/108573/1/IzzatNaimShamsulKahar2023_CopperExtractionUsingLIX84asaMobile.pdf http://eprints.utm.my/108573/ http://dx.doi.org/10.11113/amst.v27n3.275 |
_version_ |
1816130073811484672 |
score |
13.214268 |