Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive

Fossil fuel combustions from automotive industries and vehicles causes second highest emission of gases influencing global warming and climate change. Biofuels and biodiesels are renewable energy sources and alternative candidates to fossil fuel but have limitations creating requirement for blending...

Full description

Saved in:
Bibliographic Details
Main Authors: Sule, Ahmed, Abdul Latiff, Zulkarnain, Abbas, Mohammed Azman, Veza, Ibham
Format: Conference or Workshop Item
Published: 2023
Subjects:
Online Access:http://eprints.utm.my/108090/
http://dx.doi.org/10.1063/5.0141516
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.108090
record_format eprints
spelling my.utm.1080902024-10-20T07:52:53Z http://eprints.utm.my/108090/ Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive Sule, Ahmed Abdul Latiff, Zulkarnain Abbas, Mohammed Azman Veza, Ibham TJ Mechanical engineering and machinery Fossil fuel combustions from automotive industries and vehicles causes second highest emission of gases influencing global warming and climate change. Biofuels and biodiesels are renewable energy sources and alternative candidates to fossil fuel but have limitations creating requirement for blending and application of additives to biodiesel-diesel fuels. Nano-additives is promising due to higher atomic level and surface area to volume ratio; however, higher cost of nano-additives makes random selection for testing many varieties difficult, also; nitrogen oxide (NOx) emissions and particulate matter (PM) from unburnt nanoparticles is a major challenge. This work therefore uses artificial neural network (ANN) feed forward back propagation as learning algorithm to predict PM and NOx emissions using experimental data from test conducted on a single cylinder diesel engine running on palm oil biodiesel blended with conventional diesel and Iron (II) oxide (Fe2O3) nano-additive stabilized in isopropyl as surfactant at three engine loads (25%, 50%, 75%). Levenberg-Marquardt was used for training data with 6 input, two hidden layers of 5 set (10 total) and 2 output layers. The target parameters (NOx and PM) were accurately predicted by ANN training, the highest performance denoted by R and R2 of values 0.99999 and 0.9999 respectively. Based on experimental results and weight of input parameters, it is conclusive that higher percentage by volume of nano-additive reduces PM until optimal level before 'excess' dose Fe2O3 nano-additive causes higher PM emitted; lower nominal NOx resulted with continuous nano-additive increment for all load conditions. A satisfactory ANN application for prediction was achieved. 2023 Conference or Workshop Item PeerReviewed Sule, Ahmed and Abdul Latiff, Zulkarnain and Abbas, Mohammed Azman and Veza, Ibham (2023) Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive. In: 2021 International Summit on Education, Technology and Humanity, ISETH 2021, 20 December 2021-21 December 2021, Surakarta, Indonesia. http://dx.doi.org/10.1063/5.0141516
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Sule, Ahmed
Abdul Latiff, Zulkarnain
Abbas, Mohammed Azman
Veza, Ibham
Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
description Fossil fuel combustions from automotive industries and vehicles causes second highest emission of gases influencing global warming and climate change. Biofuels and biodiesels are renewable energy sources and alternative candidates to fossil fuel but have limitations creating requirement for blending and application of additives to biodiesel-diesel fuels. Nano-additives is promising due to higher atomic level and surface area to volume ratio; however, higher cost of nano-additives makes random selection for testing many varieties difficult, also; nitrogen oxide (NOx) emissions and particulate matter (PM) from unburnt nanoparticles is a major challenge. This work therefore uses artificial neural network (ANN) feed forward back propagation as learning algorithm to predict PM and NOx emissions using experimental data from test conducted on a single cylinder diesel engine running on palm oil biodiesel blended with conventional diesel and Iron (II) oxide (Fe2O3) nano-additive stabilized in isopropyl as surfactant at three engine loads (25%, 50%, 75%). Levenberg-Marquardt was used for training data with 6 input, two hidden layers of 5 set (10 total) and 2 output layers. The target parameters (NOx and PM) were accurately predicted by ANN training, the highest performance denoted by R and R2 of values 0.99999 and 0.9999 respectively. Based on experimental results and weight of input parameters, it is conclusive that higher percentage by volume of nano-additive reduces PM until optimal level before 'excess' dose Fe2O3 nano-additive causes higher PM emitted; lower nominal NOx resulted with continuous nano-additive increment for all load conditions. A satisfactory ANN application for prediction was achieved.
format Conference or Workshop Item
author Sule, Ahmed
Abdul Latiff, Zulkarnain
Abbas, Mohammed Azman
Veza, Ibham
author_facet Sule, Ahmed
Abdul Latiff, Zulkarnain
Abbas, Mohammed Azman
Veza, Ibham
author_sort Sule, Ahmed
title Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
title_short Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
title_full Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
title_fullStr Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
title_full_unstemmed Particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
title_sort particulate matter and nitrogen oxide emissions prediction using artificial neural network for diesel engine running on biodiesel-diesel fuel with nano-additive
publishDate 2023
url http://eprints.utm.my/108090/
http://dx.doi.org/10.1063/5.0141516
_version_ 1814043598920876032
score 13.209306