Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).

The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophistica...

Full description

Saved in:
Bibliographic Details
Main Authors: Jamali, Ali, Mahdianpari, Masoud, Abdul Rahman, Alias
Format: Conference or Workshop Item
Language:English
Published: 2023
Subjects:
Online Access:http://eprints.utm.my/107974/1/AliasAbdulRahman2023_HyperspectralImageClassificationUsingMultiLayerPerceptron.pdf
http://eprints.utm.my/107974/
http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.107974
record_format eprints
spelling my.utm.1079742024-10-16T06:36:25Z http://eprints.utm.my/107974/ Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). Jamali, Ali Mahdianpari, Masoud Abdul Rahman, Alias TH434-437 Quantity surveying The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 99.23%, respectively. 2023-02-06 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/107974/1/AliasAbdulRahman2023_HyperspectralImageClassificationUsingMultiLayerPerceptron.pdf Jamali, Ali and Mahdianpari, Masoud and Abdul Rahman, Alias (2023) Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). In: 2022 Geoinformation Week: Broadening Geospatial Science and Technology, 14 November 2022 - 17 November 2022, Johor Bahru, Johor, Malaysia - Virtual, Online. http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TH434-437 Quantity surveying
spellingShingle TH434-437 Quantity surveying
Jamali, Ali
Mahdianpari, Masoud
Abdul Rahman, Alias
Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
description The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 99.23%, respectively.
format Conference or Workshop Item
author Jamali, Ali
Mahdianpari, Masoud
Abdul Rahman, Alias
author_facet Jamali, Ali
Mahdianpari, Masoud
Abdul Rahman, Alias
author_sort Jamali, Ali
title Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
title_short Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
title_full Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
title_fullStr Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
title_full_unstemmed Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
title_sort hyperspectral image classification using multi-layer perceptron mixer (mlp-mixer).
publishDate 2023
url http://eprints.utm.my/107974/1/AliasAbdulRahman2023_HyperspectralImageClassificationUsingMultiLayerPerceptron.pdf
http://eprints.utm.my/107974/
http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023
_version_ 1814043572709621760
score 13.211869