Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER).
The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophistica...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | http://eprints.utm.my/107974/1/AliasAbdulRahman2023_HyperspectralImageClassificationUsingMultiLayerPerceptron.pdf http://eprints.utm.my/107974/ http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.107974 |
---|---|
record_format |
eprints |
spelling |
my.utm.1079742024-10-16T06:36:25Z http://eprints.utm.my/107974/ Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). Jamali, Ali Mahdianpari, Masoud Abdul Rahman, Alias TH434-437 Quantity surveying The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 99.23%, respectively. 2023-02-06 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/107974/1/AliasAbdulRahman2023_HyperspectralImageClassificationUsingMultiLayerPerceptron.pdf Jamali, Ali and Mahdianpari, Masoud and Abdul Rahman, Alias (2023) Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). In: 2022 Geoinformation Week: Broadening Geospatial Science and Technology, 14 November 2022 - 17 November 2022, Johor Bahru, Johor, Malaysia - Virtual, Online. http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
TH434-437 Quantity surveying |
spellingShingle |
TH434-437 Quantity surveying Jamali, Ali Mahdianpari, Masoud Abdul Rahman, Alias Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). |
description |
The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 99.23%, respectively. |
format |
Conference or Workshop Item |
author |
Jamali, Ali Mahdianpari, Masoud Abdul Rahman, Alias |
author_facet |
Jamali, Ali Mahdianpari, Masoud Abdul Rahman, Alias |
author_sort |
Jamali, Ali |
title |
Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). |
title_short |
Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). |
title_full |
Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). |
title_fullStr |
Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). |
title_full_unstemmed |
Hyperspectral image classification using multi-layer perceptron mixer (MLP-MIXER). |
title_sort |
hyperspectral image classification using multi-layer perceptron mixer (mlp-mixer). |
publishDate |
2023 |
url |
http://eprints.utm.my/107974/1/AliasAbdulRahman2023_HyperspectralImageClassificationUsingMultiLayerPerceptron.pdf http://eprints.utm.my/107974/ http://dx.doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-179-2023 |
_version_ |
1814043572709621760 |
score |
13.211869 |