Influence of magnetic casting on the permeability and anti-fouling properties of a novel iron oxide/alumina/polysulfone mixed matrix membrane.

Novel mixed matrix membranes (MMMs) were fabricated using Fe3O4, and Al2O3 nanoparticles (NPs) were added to the polysulfone (PSf) and N-methylpyrrolidone (NMP) solution. The nanocomposite membranes were fabricated using the NIPS (non-solvent induced phase separation) method. In order to create pref...

Full description

Saved in:
Bibliographic Details
Main Authors: Hashemi, Targol, Mehrnia, Mohammad Reza, Marandi, Aydin, Ismail, Ahmad Fauzi
Format: Article
Published: John Wiley and Sons Inc. 2023
Subjects:
Online Access:http://eprints.utm.my/106272/
http://dx.doi.org/10.1002/app.53370
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel mixed matrix membranes (MMMs) were fabricated using Fe3O4, and Al2O3 nanoparticles (NPs) were added to the polysulfone (PSf) and N-methylpyrrolidone (NMP) solution. The nanocomposite membranes were fabricated using the NIPS (non-solvent induced phase separation) method. In order to create preferential permeation pathways for water across the MMMs, membrane formation is accomplished with an external magnetic field. Using magnetic casting cause the targeted placement of NPs in the best location and orientation. The performance of the prepared membranes was examined in terms of pure water flux and fouling parameters. Magnetic casting considerably increased pure water flux and decreased the total resistance of the optimum mixed matrix membrane, which contains 0.2% wt. of Fe3O4 NPs to 1175 L/m2h and 13.4 * 1011 (m−1), respectively. This is explained by the ordering of magnetic nanoparticles on the membrane sub-layer cast under the magnetic field of 500 mT, which changed the sub-layer structure. Less rough membrane surface of the mixed matrix membranes offered preferable anti-fouling properties against fouling by BSA proteins. The characterization of fabricated membranes was carried out using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), and water contact angle measurement methods.