Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that can cause adverse effects on human health. The incorporation of materials as visible light photocatalysts and its energy storage capability allow for the photodegradation of BPA, especially in the absence of a light source. To date, th...

Full description

Saved in:
Bibliographic Details
Main Authors: Sukaini, Khalis, Mohamed Noor, Siti Hawa, Mansur, Sumarni, Jaffar, Filzah Hazirah, Kamaludin, Roziana, Othman, Mohd. Hafiz Dzarfan, Tutuk Djoko Kusworo, Tutuk Djoko Kusworo, Wong, Keng Yinn
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:http://eprints.utm.my/105783/1/MohdHafizDzarfan2023_PhotodegradationofBisphenolainWaterviaRound.pdf
http://eprints.utm.my/105783/
http://dx.doi.org/10.3390/catal13050816
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utm.105783
record_format eprints
spelling my.utm.1057832024-05-20T06:25:04Z http://eprints.utm.my/105783/ Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane Sukaini, Khalis Mohamed Noor, Siti Hawa Mansur, Sumarni Jaffar, Filzah Hazirah Kamaludin, Roziana Othman, Mohd. Hafiz Dzarfan Tutuk Djoko Kusworo, Tutuk Djoko Kusworo Wong, Keng Yinn TP Chemical technology Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that can cause adverse effects on human health. The incorporation of materials as visible light photocatalysts and its energy storage capability allow for the photodegradation of BPA, especially in the absence of a light source. To date, there have been no significant studies regarding energy storage in membrane technology, with only a focus on the suspension form. Hence, this study was conducted to degrade the pollutant through a co-extrusion process using a mixture of copper (II) oxide and tungsten oxide as the photocatalyst and energy storage materials, respectively. Both materials were embedded into polyvinylidene (PVDF) membranes to produce a Cu2O/WO3/PVDF dual-layer hollow fiber (DLHF) membrane. The outer dope extrusion flow rate was set at 3 mL/min, 6 mL/min, and 9 mL/min with photocatalyst:polymer ratios of 0.3, 0.50, and 0.7 Cu2O/WO3/PVDF, respectively. The performance of the membranes for each ratio was evaluated using 2 ppm of BPA with visible light irradiation. The results showed that each membrane’s outer and inner layers featured finger-like void structures, while the intermediate part had a sponge-like structure. The membrane with the photocatalyst:polymer ratio of 0.5 was hydrophilic and had a high porosity of 54.97%, resulting in a high flow of 510 L/m2h. Under visible light irradiation, a 0.5 Cu2O/PVDF DLHF membrane with a 6-mL/min outer dope flow rate was able to remove 97.82% of 2-ppm BPA without copper leaching into the water sample. Under dark conditions, the DLHF sample showed the capability of energy storage performance and could drive certain degradation after lighting off up to 70.73% of 2-ppm BPA. The photocatalytic DLHF membrane with the ratio of 0.5 was the most optimal due to its potential morphology and ability to degrade a large amount of BPA. It is important to emphasize that usage of materials with the capability for energy storage can provide a significant contribution toward more practical membranes, so photodegradation can occur even in dark conditions. MDPI 2023 Article PeerReviewed application/pdf en http://eprints.utm.my/105783/1/MohdHafizDzarfan2023_PhotodegradationofBisphenolainWaterviaRound.pdf Sukaini, Khalis and Mohamed Noor, Siti Hawa and Mansur, Sumarni and Jaffar, Filzah Hazirah and Kamaludin, Roziana and Othman, Mohd. Hafiz Dzarfan and Tutuk Djoko Kusworo, Tutuk Djoko Kusworo and Wong, Keng Yinn (2023) Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane. Catalysts, 13 (5). pp. 1-17. ISSN 2073-4344 http://dx.doi.org/10.3390/catal13050816 DOI : 10.3390/catal13050816
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Sukaini, Khalis
Mohamed Noor, Siti Hawa
Mansur, Sumarni
Jaffar, Filzah Hazirah
Kamaludin, Roziana
Othman, Mohd. Hafiz Dzarfan
Tutuk Djoko Kusworo, Tutuk Djoko Kusworo
Wong, Keng Yinn
Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
description Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that can cause adverse effects on human health. The incorporation of materials as visible light photocatalysts and its energy storage capability allow for the photodegradation of BPA, especially in the absence of a light source. To date, there have been no significant studies regarding energy storage in membrane technology, with only a focus on the suspension form. Hence, this study was conducted to degrade the pollutant through a co-extrusion process using a mixture of copper (II) oxide and tungsten oxide as the photocatalyst and energy storage materials, respectively. Both materials were embedded into polyvinylidene (PVDF) membranes to produce a Cu2O/WO3/PVDF dual-layer hollow fiber (DLHF) membrane. The outer dope extrusion flow rate was set at 3 mL/min, 6 mL/min, and 9 mL/min with photocatalyst:polymer ratios of 0.3, 0.50, and 0.7 Cu2O/WO3/PVDF, respectively. The performance of the membranes for each ratio was evaluated using 2 ppm of BPA with visible light irradiation. The results showed that each membrane’s outer and inner layers featured finger-like void structures, while the intermediate part had a sponge-like structure. The membrane with the photocatalyst:polymer ratio of 0.5 was hydrophilic and had a high porosity of 54.97%, resulting in a high flow of 510 L/m2h. Under visible light irradiation, a 0.5 Cu2O/PVDF DLHF membrane with a 6-mL/min outer dope flow rate was able to remove 97.82% of 2-ppm BPA without copper leaching into the water sample. Under dark conditions, the DLHF sample showed the capability of energy storage performance and could drive certain degradation after lighting off up to 70.73% of 2-ppm BPA. The photocatalytic DLHF membrane with the ratio of 0.5 was the most optimal due to its potential morphology and ability to degrade a large amount of BPA. It is important to emphasize that usage of materials with the capability for energy storage can provide a significant contribution toward more practical membranes, so photodegradation can occur even in dark conditions.
format Article
author Sukaini, Khalis
Mohamed Noor, Siti Hawa
Mansur, Sumarni
Jaffar, Filzah Hazirah
Kamaludin, Roziana
Othman, Mohd. Hafiz Dzarfan
Tutuk Djoko Kusworo, Tutuk Djoko Kusworo
Wong, Keng Yinn
author_facet Sukaini, Khalis
Mohamed Noor, Siti Hawa
Mansur, Sumarni
Jaffar, Filzah Hazirah
Kamaludin, Roziana
Othman, Mohd. Hafiz Dzarfan
Tutuk Djoko Kusworo, Tutuk Djoko Kusworo
Wong, Keng Yinn
author_sort Sukaini, Khalis
title Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
title_short Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
title_full Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
title_fullStr Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
title_full_unstemmed Photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
title_sort photodegradation of bisphenol a in water via round-the-clock visible light driven dual layer hollow fiber membrane
publisher MDPI
publishDate 2023
url http://eprints.utm.my/105783/1/MohdHafizDzarfan2023_PhotodegradationofBisphenolainWaterviaRound.pdf
http://eprints.utm.my/105783/
http://dx.doi.org/10.3390/catal13050816
_version_ 1800082662888570880
score 13.160551