Convolution neural network model for fundus photograph quality assessment

The excellent quality of color fundus photograph is crucial for the ophthalmologist to process the correct diagnosis and for convolutional neural network (CNN) models to optimize output classification. As a result of main causes as acquire devises efficiency and experience of a physician most fundus...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed Sheet, Sinan S., Tan, Tian-Swee, As’ari, Muhammad Amir, Wan Hitam, Wan Hazabbah, Ngoo, Qi Zhe, Sia, Joyce Sin Yin, Ling, Kelvin Chia Hiik
Format: Article
Language:English
Published: Institute of Advanced Engineering and Science 2022
Subjects:
Online Access:http://eprints.utm.my/104458/1/TanTianSwee2022_ConvolutionNeuralNetworkModelforFundus.pdf
http://eprints.utm.my/104458/
http://dx.doi.org/10.11591/ijeecs.v26.i2.pp915-923
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excellent quality of color fundus photograph is crucial for the ophthalmologist to process the correct diagnosis and for convolutional neural network (CNN) models to optimize output classification. As a result of main causes as acquire devises efficiency and experience of a physician most fundus photographs can have uneven illuminance, blur, and bad contrast, in addition to micro-features of retinal diseases, which need to force their contrast. Fundus photograph quality assessment method is proposed to find out the perfect enhanced color fundus Technique in fundoscopy photographs-based CNN model. Five photograph quality measurements, in addition to five CNN metrics, were used as standard in this study. In this research innovative approach combining photograph quality measurement and CNN metrics analysis is proposed to find out the best enhance method that is set for the multiclass CNN model. The contrast enhancement techniques are evaluated using 267 color fundus photographs divided into three retina diseases cases were downloaded from the open-source database "FIGSHARE". The study outcome showed that the presented system (single-CNN) can determine well the contrast enhancement method, as well as the low-quality fundus photograph then it can boost CNN metrics to achieve superior.