Superhydrophobic ball clay based ceramic hollow fibre membrane via universal spray coating method for membrane distillation

In this work, the feasibility study of a superhydrophobic ball clay based ceramic hollow fibre membrane (HFM) through pre-fluorinating of poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP) and ZnO nanoparticles composite with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (C8) followed by pos...

Full description

Saved in:
Bibliographic Details
Main Authors: Abd. Aziz, Mohd. Haiqal, Pauzan, Mohammad Arif Budiman, Mohd. Hisam, Nur Aina Shazana, Othman, Mohd. Hafiz Dzarfan, Adam, Mohd. Ridhwan, Iwamoto, Yuji, Puteh, Mohd. Hafiz, A. Rahman, Mukhlis, Jaafar, Juhana, Ismail, Ahmad Fauzi, Tonni Agustiono Kurniawan, Tonni Agustiono Kurniawan, Abu Bakar, Suriani
Format: Article
Published: Elsevier B.V. 2022
Subjects:
Online Access:http://eprints.utm.my/104060/
http://dx.doi.org/10.1016/j.seppur.2022.120574
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the feasibility study of a superhydrophobic ball clay based ceramic hollow fibre membrane (HFM) through pre-fluorinating of poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP) and ZnO nanoparticles composite with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (C8) followed by post-roughening on fluorinated ball clay based ceramic hollow fibre membrane (PH/C8/ZnO-C8/HFM) via universal spray coating. The coating was applied onto ball clay based ceramic hollow fibre membrane's surface in order to achieve superhydrophobicity, which had not previously been reported. C8 was grafted on the ceramic hollow fibre membrane's surface using the conventional immersion method and the prepared membrane (C8/HFM) was served as a control. The hierarchical structure of PH/C8/ZnO-C8/HFM is composed of a cooperative layer of fluorinated PVDF-HFP/ZnO nanocomposite in mechanical interlocking mode. PH/C8/ZnO-C8/HFM has better superhydrophobic properties, with a water contact angle of 154.4° and a hysteresis contact angle of 3.2°, than C8/HFM, which has a water contact angle of 151.7° and a hysteresis contact angle of 9.2°. The PH/C8/ZnO-C8/HFM outperforms the C8/HFM in the wetting resistance because the liquid entry pressure of water LEPw (PH/C8/ZnO-C8/HFM = 1.33 ± 0.4 bar, C8/HFM = 0.37 ± 0.1 bar) and salt rejection in MD for the PH/C8/ZnO-C8/HFM is better than C8/HFM.