Draft genome sequence of Thermovorax subterraneus 70BT, a thermophile isolated from a geothermally active underground mine that produces hydrogen

Thermovorax subterraneus 70BT is a thermophile found in a geothermically active underground mine. The strain 70BT belongs to the class of Clostridia, order of Thermosediminibacterales, and family of Thermosediminibacteraceae. Strain 70BT was the only type strain since the genus was discovered >10...

Full description

Saved in:
Bibliographic Details
Main Authors: Goh, Kian Mau, Liew, Kok Jun, Shahar, Saleha, Zakaria, Iffah Izzati, Kahar, Ummirul Mukminin
Format: Article
Published: Elsevier Inc. 2022
Subjects:
Online Access:http://eprints.utm.my/103476/
http://dx.doi.org/10.1016/j.dib.2022.108695
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermovorax subterraneus 70BT is a thermophile found in a geothermically active underground mine. The strain 70BT belongs to the class of Clostridia, order of Thermosediminibacterales, and family of Thermosediminibacteraceae. Strain 70BT was the only type strain since the genus was discovered >10 years ago. Strain 70BT was compared to strains from other genera in terms of its phenotypics, chemotaxonomics, and phylogenetics (16S rRNA gene) in previous studies. However, the genome sequence of this strain has not been described. We herein described the genome sequence of strain 70BT. In total, the assembled genome of strain 70BT has a size of 2,451,552 bp, contributed by 44 contigs, with a coverage of 445X, a N50 of 86,294 bp, and a GC% of 43.8. A total of 2,540 genes were encoded in the genome, including 2,431 protein-coding sequences, 46 pseudogenes, and 63 RNA genes. Through the Cluster of Orthologous Groups (COGs) analysis, a total of 2,404 protein-coding genes were functionally assigned to COGs in the genome of strain 70BT. Among the members of Thermosediminibacteraceae family, strain 70BT has the closest relationship to Caldanaerovirga acetigignens JW/SA-NV4T based on the genome-to-genome comparison indexes (i.e., ANI, dDDH, AAI, and POCP). An earlier study reported that strain 70BT could produce hydrogen. We discovered genes encoding [FeFe] hydrogenase through gene mining analysis. For future research, this genome data will be used as a reference for all matters pertaining to the genus Thermovorax and family Thermosediminibacteraceae.