Conflict resolution strategy in handover management for 4G and 5G networks

Fifth-generation (5G) cellular networks offer high transmission rates in dense urban environments. However, a massive deployment of small cells will be required to provide wide-area coverage, which leads to an increase in the number of handovers (HOs). Mobility management is an important issue that...

Full description

Saved in:
Bibliographic Details
Main Authors: Alhammadi, Abdulraqeb, Hassan, Wan Haslina, El-Saleh, Ayman A., Shayea, Ibraheem, Mohamad, Hafizal, Daradkeh, Yousef Ibrahim
Format: Article
Language:English
Published: Tech Science Press 2022
Subjects:
Online Access:http://eprints.utm.my/103257/1/WanHaslinaHassan2022_ConflictResolutionStrategyinHandoverManagement.pdf
http://eprints.utm.my/103257/
http://dx.doi.org/10.32604/cmc.2022.024713
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fifth-generation (5G) cellular networks offer high transmission rates in dense urban environments. However, a massive deployment of small cells will be required to provide wide-area coverage, which leads to an increase in the number of handovers (HOs). Mobility management is an important issue that requires considerable attention in heterogeneous networks, where 5G ultra-dense small cells coexist with current fourth-generation (4G) networks. Althoughmobility robustness optimization (MRO) and load balancing optimization (LBO) functions have been introduced in the 3GPP standard to address HO problems, non-robust and nonoptimal algorithms for selecting appropriateHOcontrol parameters (HCPs) still exist, and an optimal solution is subjected to compromise between LBO andMROfunctions. Thus,HOdecision algorithms become inefficient. This paper proposes a conflict resolution technique to address the contradiction between MRO and LBO functions. The proposed technique exploits received signal reference power (RSRP), cell load and user speed to adapt HO margin (HM) and time to trigger (TTT). EstimatedHMand TTT depend on a weighting function andHO type which is represented by user status duringmobility. The proposed technique is validated with other existing algorithms fromthe literature. Simulation results demonstrate that the proposed technique outperforms existing algorithms overall performance metrics. The proposed technique reduces the overall average HO ping-pong probability, HO failure rate and interruption time by more than 90%, 46% and 58%, respectively, compared with the other schemes overall speed scenarios and simulation time.