Performance evaluation of whey flux in dead-end and cross-flow modes via convolutional neural networks

Effluent originating from cheese production puts pressure onto environment due to its high organic load. Therefore, the main objective of this work was to compare the influence of different process variables (transmembrane pressure (TMP), Reynolds number and feed pH) on whey protein recovery from sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Yogarathinam, Lukka Thuyavan, Velswamy, Kirubakaran, Gangasalam, Arthanareeswaran, Ismail, Ahmad Fauzi, Goh, Pei Sean, Narayanan, Anantharaman, Abdullah, Mohd. Sohaimi
Format: Article
Language:English
Published: Academic Press 2022
Subjects:
Online Access:http://eprints.utm.my/103197/1/AhmadFauziIsmail2022_PerformanceEvaluationofWheyFluxInDead_compressed.pdf
http://eprints.utm.my/103197/
http://dx.doi.org/10.1016/j.jenvman.2021.113872
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effluent originating from cheese production puts pressure onto environment due to its high organic load. Therefore, the main objective of this work was to compare the influence of different process variables (transmembrane pressure (TMP), Reynolds number and feed pH) on whey protein recovery from synthetic and industrial cheese whey using polyethersulfone (PES 30 kDa) membrane in dead-end and cross-flow modes. Analysis on the fouling mechanistic model indicates that cake layer formation is dominant as compared to other pore blocking phenomena evaluated. Among the input variables, pH of whey protein solution has the biggest influence towards membrane flux and protein rejection performances. At pH 4, electrostatic attraction experienced by whey protein molecules prompted a decline in flux. Cross-flow filtration system exhibited a whey rejection value of 0.97 with an average flux of 69.40 L/m2h and at an experimental condition of 250 kPa and 8 for TMP and pH, respectively. The dynamic behavior of whey effluent flux was modeled using machine learning (ML) tool convolutional neural networks (CNN) and recursive one-step prediction scheme was utilized. Linear and non-linear correlation indicated that CNN model (R2 – 0.99) correlated well with the dynamic flux experimental data. PES 30 kDa membrane displayed a total protein rejection coefficient of 0.96 with 55% of water recovery for the industrial cheese whey effluent. Overall, these filtration studies revealed that this dynamic whey flux data studies using the CNN modeling also has a wider scope as it can be applied in sensor tuning to monitor flux online by means of enhancing whey recovery efficiency.