Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material
The electrode material is critical to the performance of a supercapacitor. Therefore, developing a cost-effective and efficient electrode is an essential step toward broader applications for energy storage devices. This paper reports the development of a novel binary composite from watermelon rind (...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd.
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/103112/1/EzzatChanAbdullah2022_FacileSynthesisofaBinaryComposite.pdf http://eprints.utm.my/103112/ http://dx.doi.org/10.1016/j.est.2022.104147 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utm.103112 |
---|---|
record_format |
eprints |
spelling |
my.utm.1031122023-10-12T09:32:14Z http://eprints.utm.my/103112/ Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material Omar, Nurizan Abdullah, Ezzat Chan Numan, Arshid Mubarak, Nabisab Mujawar Khalid, Mohammad Aid, Siti Rahmah Agudosi, Elochukwu Stephen T Technology (General) The electrode material is critical to the performance of a supercapacitor. Therefore, developing a cost-effective and efficient electrode is an essential step toward broader applications for energy storage devices. This paper reports the development of a novel binary composite from watermelon rind (BCWR) as a nitrogen-rich and high stability precursor for a supercapacitor's electrode. BCWR has been successfully synthesized via one-pot self-purging pyrolysis of watermelon rind waste impregnated with nickel ferrite (NiFe2O4). The effects of process parameters such as pyrolysis temperature, pyrolysis time and biomass to metal oxide ratio were investigated by response surface methodology (RSM). The statistical analysis showed the optimal synthesis condition for BCWR to be 600 °C pyrolysis temperature, 15 min pyrolysis time, and 75:25 ratio of watermelon rind (WR) to NiFe2O4. Furthermore, the predicted model and experimental results for the specific capacity of BCWR were determined to be 191 Cg−1 and 187 Cg−1 at 5 mV s−1. With the experimental validation based on structural, chemical and morphological and electrochemical properties determined by X-Ray Diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), field emission electron scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectrometry (EIS) we find that watermelon rind biochar (WRB) and BCWR can be considered as a superior alternative for electrode materials for energy storage applications. Two-electrode cells device configuration of BCWR/WRB supercapattery exhibited high power density and energy density of 750.00 W kg−1 and 28.33 Wh kg−1 respectively at 1 Ag−1 current density. Besides, the calculated charge transfer resistance of the BCWR/WRB supercapattery is 42.35 Ohms. Elsevier Ltd. 2022 Article PeerReviewed application/pdf en http://eprints.utm.my/103112/1/EzzatChanAbdullah2022_FacileSynthesisofaBinaryComposite.pdf Omar, Nurizan and Abdullah, Ezzat Chan and Numan, Arshid and Mubarak, Nabisab Mujawar and Khalid, Mohammad and Aid, Siti Rahmah and Agudosi, Elochukwu Stephen (2022) Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material. Journal of Energy Storage, 49 (104147). pp. 1-15. ISSN 2352-152X http://dx.doi.org/10.1016/j.est.2022.104147 DOI: 10.1016/j.est.2022.104147 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
language |
English |
topic |
T Technology (General) |
spellingShingle |
T Technology (General) Omar, Nurizan Abdullah, Ezzat Chan Numan, Arshid Mubarak, Nabisab Mujawar Khalid, Mohammad Aid, Siti Rahmah Agudosi, Elochukwu Stephen Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
description |
The electrode material is critical to the performance of a supercapacitor. Therefore, developing a cost-effective and efficient electrode is an essential step toward broader applications for energy storage devices. This paper reports the development of a novel binary composite from watermelon rind (BCWR) as a nitrogen-rich and high stability precursor for a supercapacitor's electrode. BCWR has been successfully synthesized via one-pot self-purging pyrolysis of watermelon rind waste impregnated with nickel ferrite (NiFe2O4). The effects of process parameters such as pyrolysis temperature, pyrolysis time and biomass to metal oxide ratio were investigated by response surface methodology (RSM). The statistical analysis showed the optimal synthesis condition for BCWR to be 600 °C pyrolysis temperature, 15 min pyrolysis time, and 75:25 ratio of watermelon rind (WR) to NiFe2O4. Furthermore, the predicted model and experimental results for the specific capacity of BCWR were determined to be 191 Cg−1 and 187 Cg−1 at 5 mV s−1. With the experimental validation based on structural, chemical and morphological and electrochemical properties determined by X-Ray Diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), field emission electron scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectrometry (EIS) we find that watermelon rind biochar (WRB) and BCWR can be considered as a superior alternative for electrode materials for energy storage applications. Two-electrode cells device configuration of BCWR/WRB supercapattery exhibited high power density and energy density of 750.00 W kg−1 and 28.33 Wh kg−1 respectively at 1 Ag−1 current density. Besides, the calculated charge transfer resistance of the BCWR/WRB supercapattery is 42.35 Ohms. |
format |
Article |
author |
Omar, Nurizan Abdullah, Ezzat Chan Numan, Arshid Mubarak, Nabisab Mujawar Khalid, Mohammad Aid, Siti Rahmah Agudosi, Elochukwu Stephen |
author_facet |
Omar, Nurizan Abdullah, Ezzat Chan Numan, Arshid Mubarak, Nabisab Mujawar Khalid, Mohammad Aid, Siti Rahmah Agudosi, Elochukwu Stephen |
author_sort |
Omar, Nurizan |
title |
Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
title_short |
Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
title_full |
Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
title_fullStr |
Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
title_full_unstemmed |
Facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
title_sort |
facile synthesis of a binary composite from watermelon rind using response surface methodology for supercapacitor electrode material |
publisher |
Elsevier Ltd. |
publishDate |
2022 |
url |
http://eprints.utm.my/103112/1/EzzatChanAbdullah2022_FacileSynthesisofaBinaryComposite.pdf http://eprints.utm.my/103112/ http://dx.doi.org/10.1016/j.est.2022.104147 |
_version_ |
1781777647102066688 |
score |
13.211869 |