Multiview human action recognition system based on OpenPose and KNN classifier
Human action recognition is one of the trending research topics in the field of computer vision. Human-computer interaction and video monitoring are broad applications that aid in the understanding of human action in a video. The problem with action recognition algorithms such as 3D CNN, Two-stream...
保存先:
主要な著者: | Malik, Najeeb Ur Rehman, Abu Bakar, Syed Abdul Rahman, Sheikh, Usman Ullah |
---|---|
フォーマット: | Book Section |
出版事項: |
Springer Science and Business Media Deutschland GmbH
2022
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/100671/ http://dx.doi.org/10.1007/978-981-16-8129-5_136 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Multiview human action recognition system based on openpose and KNN classifier
著者:: Malik, Najeeb Ur Rehman, 等
出版事項: (2022) -
Cascading pose features with CNN-LSTM for multiview human action recognition
著者:: Rehman Malik, Najeeb, 等
出版事項: (2023) -
Multi-view human action recognition using skeleton based-FineKNN with extraneous frame scrapping technique
著者:: Rehman Malik, Najeeb, 等
出版事項: (2023) -
Human pose stream for multi-stream convolutional network in video action classification
著者:: Tan, Jackson Zhe Sheng
出版事項: (2018) -
ENBFS+kNN: Hybrid ensemble classifier using entropy-based naïve Bayes with feature selection and k-nearest neighbor
著者:: Sainin, Mohd Shamrie, 等
出版事項: (2016)