Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | Conference or Workshop Item |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/100388/ http://dx.doi.org/10.1063/5.0112714 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
id |
my.utm.100388 |
---|---|
record_format |
eprints |
spelling |
my.utm.1003882023-04-13T02:43:09Z http://eprints.utm.my/id/eprint/100388/ Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading Khan, S. A. Wong, K. J. Sung, A. N. Johar, M. Tamin, M. N. TJ Mechanical engineering and machinery In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM model parameters are characterized through an experimental-finite element (FE) approach. These parameters are the critical Mode I energy released rate, GIC, tensile strength, T and tensile penalty stiffness, kn. For this purpose, a unidirectional, 32-ply ([0]32) double-cantilever beam specimen is tested to fracture. The global load-displacement response of the specimen to the interface crack extension is recorded. The result establishes the Mode I critical energy release rate, GIC = 0.31 N/mm. The validated finite element (FE) simulation of the test is then employed to extract the CZM model parameters corresponding to the observed interlaminar damage initiation event. The FE-calculated maximum normal stress at the interface crack front is taken to represent the tensile strength of the interface, T=62.5 MPa. The corresponding slope of the stress-relative opening displacement of this critical material point indicates the penalty stiffness of the interface, kn = 0.98×106 N/mm3. With the established interfacial properties, the CZM could then be employed in simulating the deformation and damage process of the interfaces in FRP composite laminates under Mode I loading. 2022 Conference or Workshop Item PeerReviewed Khan, S. A. and Wong, K. J. and Sung, A. N. and Johar, M. and Tamin, M. N. (2022) Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading. In: 2021 International Conference of Industrial, Mechanical and Electrical Engineering, ICIMEE 2021, 7 December 2021, Virtual, Online. http://dx.doi.org/10.1063/5.0112714 |
institution |
Universiti Teknologi Malaysia |
building |
UTM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Malaysia |
content_source |
UTM Institutional Repository |
url_provider |
http://eprints.utm.my/ |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Khan, S. A. Wong, K. J. Sung, A. N. Johar, M. Tamin, M. N. Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading |
description |
In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM model parameters are characterized through an experimental-finite element (FE) approach. These parameters are the critical Mode I energy released rate, GIC, tensile strength, T and tensile penalty stiffness, kn. For this purpose, a unidirectional, 32-ply ([0]32) double-cantilever beam specimen is tested to fracture. The global load-displacement response of the specimen to the interface crack extension is recorded. The result establishes the Mode I critical energy release rate, GIC = 0.31 N/mm. The validated finite element (FE) simulation of the test is then employed to extract the CZM model parameters corresponding to the observed interlaminar damage initiation event. The FE-calculated maximum normal stress at the interface crack front is taken to represent the tensile strength of the interface, T=62.5 MPa. The corresponding slope of the stress-relative opening displacement of this critical material point indicates the penalty stiffness of the interface, kn = 0.98×106 N/mm3. With the established interfacial properties, the CZM could then be employed in simulating the deformation and damage process of the interfaces in FRP composite laminates under Mode I loading. |
format |
Conference or Workshop Item |
author |
Khan, S. A. Wong, K. J. Sung, A. N. Johar, M. Tamin, M. N. |
author_facet |
Khan, S. A. Wong, K. J. Sung, A. N. Johar, M. Tamin, M. N. |
author_sort |
Khan, S. A. |
title |
Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading |
title_short |
Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading |
title_full |
Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading |
title_fullStr |
Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading |
title_full_unstemmed |
Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading |
title_sort |
characterization of interface damage of fiber-reinforced polymer composite laminates under mode i loading |
publishDate |
2022 |
url |
http://eprints.utm.my/id/eprint/100388/ http://dx.doi.org/10.1063/5.0112714 |
_version_ |
1764222559674433536 |
score |
13.251813 |