Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading

In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Khan, S. A., Wong, K. J., Sung, A. N., Johar, M., Tamin, M. N.
التنسيق: Conference or Workshop Item
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/100388/
http://dx.doi.org/10.1063/5.0112714
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my.utm.100388
record_format eprints
spelling my.utm.1003882023-04-13T02:43:09Z http://eprints.utm.my/id/eprint/100388/ Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading Khan, S. A. Wong, K. J. Sung, A. N. Johar, M. Tamin, M. N. TJ Mechanical engineering and machinery In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM model parameters are characterized through an experimental-finite element (FE) approach. These parameters are the critical Mode I energy released rate, GIC, tensile strength, T and tensile penalty stiffness, kn. For this purpose, a unidirectional, 32-ply ([0]32) double-cantilever beam specimen is tested to fracture. The global load-displacement response of the specimen to the interface crack extension is recorded. The result establishes the Mode I critical energy release rate, GIC = 0.31 N/mm. The validated finite element (FE) simulation of the test is then employed to extract the CZM model parameters corresponding to the observed interlaminar damage initiation event. The FE-calculated maximum normal stress at the interface crack front is taken to represent the tensile strength of the interface, T=62.5 MPa. The corresponding slope of the stress-relative opening displacement of this critical material point indicates the penalty stiffness of the interface, kn = 0.98×106 N/mm3. With the established interfacial properties, the CZM could then be employed in simulating the deformation and damage process of the interfaces in FRP composite laminates under Mode I loading. 2022 Conference or Workshop Item PeerReviewed Khan, S. A. and Wong, K. J. and Sung, A. N. and Johar, M. and Tamin, M. N. (2022) Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading. In: 2021 International Conference of Industrial, Mechanical and Electrical Engineering, ICIMEE 2021, 7 December 2021, Virtual, Online. http://dx.doi.org/10.1063/5.0112714
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Khan, S. A.
Wong, K. J.
Sung, A. N.
Johar, M.
Tamin, M. N.
Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
description In this study, the unidirectional carbon fiber-reinforced polymer (CFRP) composite laminates under the Mode I loading are characterized using Cohesive Zone Model (CZM). A bilinear traction-displacement softening law is assumed for the interface behavior. The required interlaminar properties and CZM model parameters are characterized through an experimental-finite element (FE) approach. These parameters are the critical Mode I energy released rate, GIC, tensile strength, T and tensile penalty stiffness, kn. For this purpose, a unidirectional, 32-ply ([0]32) double-cantilever beam specimen is tested to fracture. The global load-displacement response of the specimen to the interface crack extension is recorded. The result establishes the Mode I critical energy release rate, GIC = 0.31 N/mm. The validated finite element (FE) simulation of the test is then employed to extract the CZM model parameters corresponding to the observed interlaminar damage initiation event. The FE-calculated maximum normal stress at the interface crack front is taken to represent the tensile strength of the interface, T=62.5 MPa. The corresponding slope of the stress-relative opening displacement of this critical material point indicates the penalty stiffness of the interface, kn = 0.98×106 N/mm3. With the established interfacial properties, the CZM could then be employed in simulating the deformation and damage process of the interfaces in FRP composite laminates under Mode I loading.
format Conference or Workshop Item
author Khan, S. A.
Wong, K. J.
Sung, A. N.
Johar, M.
Tamin, M. N.
author_facet Khan, S. A.
Wong, K. J.
Sung, A. N.
Johar, M.
Tamin, M. N.
author_sort Khan, S. A.
title Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
title_short Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
title_full Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
title_fullStr Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
title_full_unstemmed Characterization of interface damage of fiber-reinforced polymer composite laminates under mode I loading
title_sort characterization of interface damage of fiber-reinforced polymer composite laminates under mode i loading
publishDate 2022
url http://eprints.utm.my/id/eprint/100388/
http://dx.doi.org/10.1063/5.0112714
_version_ 1764222559674433536
score 13.251813