Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples

Parabens are chemicals that are frequently used as preservatives in numerous cosmetic products. In recent years, the safety concern over these compounds has grown due to their endocrinedisrupting activity. In this research, a novel green magnetic molecularly imprinted polymer(GMMIP) was synthesised...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramin, Nursyahera Azreen, Asman, Saliza
Format: Article
Language:English
Published: GrowingScience 2023
Subjects:
Online Access:http://eprints.uthm.edu.my/9435/1/J15999_7999170bbc485fefcf7ac5dba296bff7.pdf
http://eprints.uthm.edu.my/9435/
https://doi.org/10.5267/j.ccl.2023.1.008
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uthm.eprints.9435
record_format eprints
spelling my.uthm.eprints.94352023-07-30T07:13:01Z http://eprints.uthm.edu.my/9435/ Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples Ramin, Nursyahera Azreen Asman, Saliza T Technology (General) Parabens are chemicals that are frequently used as preservatives in numerous cosmetic products. In recent years, the safety concern over these compounds has grown due to their endocrinedisrupting activity. In this research, a novel green magnetic molecularly imprinted polymer(GMMIP) was synthesised using propylparaben as a template and then applied as an adsorbent to selectively recognise and remove parabens from cosmetic samples. The green strategies were introduced by using Persicaria odorata or Kesum leaf extract as a reducing agent to synthesise green magnetic nanoparticles (MNP) as a magnetic core, and deep eutectic solvent (DES) has been designed as an environmentally friendly functional monomer that was used in the preparation of GMMIP. The GMMIP was characterised using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and BrunauerEmmett-Teller (BET). The results of FESEM and BET indicated that the GMMIP exhibited an irregular spherical shape and mesoporous characteristics with a pore size of 17.74 nm. The adsorption pH, kinetics, isotherms, and thermodynamics parameters were performed to investigate the interactions that take place between GMMIP and propylparaben. The adsorption processes appeared to best fit the pseudo-second-order kinetic and Freundlich isotherm models at an optimum pH of 12. Findings from a thermodynamics study revealed the adsorption process was exothermic, spontaneous, and more favourable at 298 K. The optimised GMMIP was applied as an adsorbent to remove the parabens from cosmetic samples. When compared to methylparaben and ethylparaben, the GMMIP had the highest selectivity and effectively removed propylparaben, with recoveries ranging from 75.6% to 113.3%. It was found that the limits of detection (LOD) and quantification (LOQ) were between 0.03 and 0.05 mg/L and 0.11 and 0.16 mg/L, respectively. The synthesised GMMIP proved to be a convenient and effective adsorbent to remove parabens from cosmetic products GrowingScience 2023 Article PeerReviewed text en http://eprints.uthm.edu.my/9435/1/J15999_7999170bbc485fefcf7ac5dba296bff7.pdf Ramin, Nursyahera Azreen and Asman, Saliza (2023) Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples. Current Chemistry Letters, 12. pp. 623-640. https://doi.org/10.5267/j.ccl.2023.1.008
institution Universiti Tun Hussein Onn Malaysia
building UTHM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tun Hussein Onn Malaysia
content_source UTHM Institutional Repository
url_provider http://eprints.uthm.edu.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Ramin, Nursyahera Azreen
Asman, Saliza
Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
description Parabens are chemicals that are frequently used as preservatives in numerous cosmetic products. In recent years, the safety concern over these compounds has grown due to their endocrinedisrupting activity. In this research, a novel green magnetic molecularly imprinted polymer(GMMIP) was synthesised using propylparaben as a template and then applied as an adsorbent to selectively recognise and remove parabens from cosmetic samples. The green strategies were introduced by using Persicaria odorata or Kesum leaf extract as a reducing agent to synthesise green magnetic nanoparticles (MNP) as a magnetic core, and deep eutectic solvent (DES) has been designed as an environmentally friendly functional monomer that was used in the preparation of GMMIP. The GMMIP was characterised using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and BrunauerEmmett-Teller (BET). The results of FESEM and BET indicated that the GMMIP exhibited an irregular spherical shape and mesoporous characteristics with a pore size of 17.74 nm. The adsorption pH, kinetics, isotherms, and thermodynamics parameters were performed to investigate the interactions that take place between GMMIP and propylparaben. The adsorption processes appeared to best fit the pseudo-second-order kinetic and Freundlich isotherm models at an optimum pH of 12. Findings from a thermodynamics study revealed the adsorption process was exothermic, spontaneous, and more favourable at 298 K. The optimised GMMIP was applied as an adsorbent to remove the parabens from cosmetic samples. When compared to methylparaben and ethylparaben, the GMMIP had the highest selectivity and effectively removed propylparaben, with recoveries ranging from 75.6% to 113.3%. It was found that the limits of detection (LOD) and quantification (LOQ) were between 0.03 and 0.05 mg/L and 0.11 and 0.16 mg/L, respectively. The synthesised GMMIP proved to be a convenient and effective adsorbent to remove parabens from cosmetic products
format Article
author Ramin, Nursyahera Azreen
Asman, Saliza
author_facet Ramin, Nursyahera Azreen
Asman, Saliza
author_sort Ramin, Nursyahera Azreen
title Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
title_short Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
title_full Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
title_fullStr Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
title_full_unstemmed Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
title_sort synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples
publisher GrowingScience
publishDate 2023
url http://eprints.uthm.edu.my/9435/1/J15999_7999170bbc485fefcf7ac5dba296bff7.pdf
http://eprints.uthm.edu.my/9435/
https://doi.org/10.5267/j.ccl.2023.1.008
_version_ 1773545899546378240
score 13.209306