Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications

As the world population rises, energy needs are become critical. Using photovoltaic technologies like amorphous silicon solar cells(aSiSC)to harvest solar power might benefit global concern. Previous research claimed that aSiSCs were modest short-wavelength absorbers. Quantum dot(QD) may be applied...

Full description

Saved in:
Bibliographic Details
Main Authors: Basyir Rodhuan, Mirza, Abdul-Kahar, Rosmila, Ameruddin, Amira Saryati, Mohd Rus, Anika Zafiah, Kim Gaik Tay, Kim Gaik Tay
Format: Article
Language:English
Published: IOP 2023
Subjects:
Online Access:http://eprints.uthm.edu.my/9424/1/J15965_cd67c018e6e993d5e9308470517d9d57.pdf
http://eprints.uthm.edu.my/9424/
https://doi.org/10.1088/1402-4896/acc9e5
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uthm.eprints.9424
record_format eprints
spelling my.uthm.eprints.94242023-07-30T07:12:28Z http://eprints.uthm.edu.my/9424/ Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications Basyir Rodhuan, Mirza Abdul-Kahar, Rosmila Ameruddin, Amira Saryati Mohd Rus, Anika Zafiah Kim Gaik Tay, Kim Gaik Tay T Technology (General) As the world population rises, energy needs are become critical. Using photovoltaic technologies like amorphous silicon solar cells(aSiSC)to harvest solar power might benefit global concern. Previous research claimed that aSiSCs were modest short-wavelength absorbers. Quantum dot(QD) may be applied to the aSiSC to enhance optical absorptions and electric fields as the QD’s bandgap is tunable, which can cover a broader electromagnetic range. This study aims are to design the 3D aSiSC with QD on the model and to investigate the optical absorption peak, electric field profiles, and light–matter interaction of the models via COMSOL Multiphysics software. From the base model, the optical absorption improved from 736 nm at 41.827% to 46.005% at 642 nm for the aSiQDSC model which developed with 0.5/3.0 nm radius of core/shell cadmium selenide/zinc sulphide (CdSe/ZnS). This study proceeded combining rectangular nanosheets gold and silver nanoantenna (Au and Ag NA) with various gap g of NA to the aSiQDSC models where g = 0.5 nm Ag NA model was presented the higher optical absorption of 47.246% at 650 nm, and electric fields of 2.53 × 1010 V nm−1 Computationally, this ultimate design is ecologically sound for solar cell applications, which allow future direction in renewable energy research and fabrication. IOP 2023 Article PeerReviewed text en http://eprints.uthm.edu.my/9424/1/J15965_cd67c018e6e993d5e9308470517d9d57.pdf Basyir Rodhuan, Mirza and Abdul-Kahar, Rosmila and Ameruddin, Amira Saryati and Mohd Rus, Anika Zafiah and Kim Gaik Tay, Kim Gaik Tay (2023) Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications. Physica Scripta, 98. pp. 1-13. https://doi.org/10.1088/1402-4896/acc9e5
institution Universiti Tun Hussein Onn Malaysia
building UTHM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tun Hussein Onn Malaysia
content_source UTHM Institutional Repository
url_provider http://eprints.uthm.edu.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Basyir Rodhuan, Mirza
Abdul-Kahar, Rosmila
Ameruddin, Amira Saryati
Mohd Rus, Anika Zafiah
Kim Gaik Tay, Kim Gaik Tay
Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications
description As the world population rises, energy needs are become critical. Using photovoltaic technologies like amorphous silicon solar cells(aSiSC)to harvest solar power might benefit global concern. Previous research claimed that aSiSCs were modest short-wavelength absorbers. Quantum dot(QD) may be applied to the aSiSC to enhance optical absorptions and electric fields as the QD’s bandgap is tunable, which can cover a broader electromagnetic range. This study aims are to design the 3D aSiSC with QD on the model and to investigate the optical absorption peak, electric field profiles, and light–matter interaction of the models via COMSOL Multiphysics software. From the base model, the optical absorption improved from 736 nm at 41.827% to 46.005% at 642 nm for the aSiQDSC model which developed with 0.5/3.0 nm radius of core/shell cadmium selenide/zinc sulphide (CdSe/ZnS). This study proceeded combining rectangular nanosheets gold and silver nanoantenna (Au and Ag NA) with various gap g of NA to the aSiQDSC models where g = 0.5 nm Ag NA model was presented the higher optical absorption of 47.246% at 650 nm, and electric fields of 2.53 × 1010 V nm−1 Computationally, this ultimate design is ecologically sound for solar cell applications, which allow future direction in renewable energy research and fabrication.
format Article
author Basyir Rodhuan, Mirza
Abdul-Kahar, Rosmila
Ameruddin, Amira Saryati
Mohd Rus, Anika Zafiah
Kim Gaik Tay, Kim Gaik Tay
author_facet Basyir Rodhuan, Mirza
Abdul-Kahar, Rosmila
Ameruddin, Amira Saryati
Mohd Rus, Anika Zafiah
Kim Gaik Tay, Kim Gaik Tay
author_sort Basyir Rodhuan, Mirza
title Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications
title_short Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications
title_full Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications
title_fullStr Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications
title_full_unstemmed Computational modelling of light-matter interaction in aSi withCdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications
title_sort computational modelling of light-matter interaction in asi withcdse/zns core/shell quantum dots and metal nanoantenna for solar cell applications
publisher IOP
publishDate 2023
url http://eprints.uthm.edu.my/9424/1/J15965_cd67c018e6e993d5e9308470517d9d57.pdf
http://eprints.uthm.edu.my/9424/
https://doi.org/10.1088/1402-4896/acc9e5
_version_ 1773545897929474048
score 13.214268