Triton X-100β-Cyclodextrin cloud point extraction for removal of phenol using different of sodium salts as inducing phase separation agent

A simple and low-cost cloud point extraction (CPE) method was developed for the removal of phenol in water samples prior to its spectrophotometric detection. Two CPE methods; CPE-(TX/βCD)-NaOH and CPE-(TX/βCD)-Na2CO3 were developed based on Triton X-100/β-cyclodextrin (TX-100/β-CD) using electrolyte...

Full description

Saved in:
Bibliographic Details
Main Authors: Asman, Saliza, Abas, Nur Azlie
Format: Article
Language:English
Published: Asian Journal of Chemistry 2018
Subjects:
Online Access:http://eprints.uthm.edu.my/6068/1/AJ%202018%20%281020%29%20Triton%20X-100%CE%B2-Cyclodextrin%20cloud%20point%20extraction%20for%20removal%20of%20phenol%20using%20different%20of%20sodium%20salts%20as%20inducing%20phase%20separation%20ag.pdf
http://eprints.uthm.edu.my/6068/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple and low-cost cloud point extraction (CPE) method was developed for the removal of phenol in water samples prior to its spectrophotometric detection. Two CPE methods; CPE-(TX/βCD)-NaOH and CPE-(TX/βCD)-Na2CO3 were developed based on Triton X-100/β-cyclodextrin (TX-100/β-CD) using electrolytes of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3), respectively as inducing phase separation agents. The effects of parameters; electrolytes, surfactant, β-CD, and analyte concentrations, temperature, incubation time, and pH were evaluated in the context of extracting phenol from an aqueous media. Under optimized conditions, the CPE-(TX-βCD)-NaOH was selected to extract phenol from real water samples due to its superior performance vis-à-vis the CPE-(TX-βCD)-Na2CO3. The calibration curve was linear in the range of 1.0 mg L-1 to 3.0 mg L-1 of phenol, with a regression coefficient of 0.9855. The extraction efficiency in spiked and without spiked phenol in real water samples was in the range of 91.9 - 116.1 %. The results confirmed that the developed method can be applied satisfactorily to detect the presence of phenol in real water samples.