Synergistic artificial neural network scheme for monitoring and diagnosis of multivariate process variation in mean shifts
In quality control, monitoring and diagnosis of multivariate out of control condition is essential in today’s manufacturing industries. The simplest case involves two correlated variables; for instance, monitoring value of temperature and pressure in our environment. Monitoring refers to the ide...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English |
Published: |
2014
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/1540/1/24p%20MOHD%20FAIRUZ%20MARIAN.pdf http://eprints.uthm.edu.my/1540/2/MOHD%20FAIRUZ%20MARIAN%20WATERMARK.pdf http://eprints.uthm.edu.my/1540/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In quality control, monitoring and diagnosis of multivariate out of control condition
is essential in today’s manufacturing industries. The simplest case involves two
correlated variables; for instance, monitoring value of temperature and pressure in
our environment. Monitoring refers to the identification of process condition either it
is running in control or out of control. Diagnosis refers to the identification of source
variables (X1 and X2) for out of control. In this study, a synergistic artificial neural
network scheme was investigated in quality control of process in plastic injection
moulding part. This process was selected since it less reported in the literature. In the
related point of view, this study should be useful in minimizing the cost of waste
materials. The result of this study, suggested this scheme has a superior performance
compared to the traditional control chart, namely Multivariate Exponentially
Weighted Moving Average (MEWMA). In monitoring, it is effective in rapid
detection of out of control without false alarm. In diagnosis, it is able to accurately
identify for source of variables. Whereby, diagnosis cannot be performed by
traditional control chart. This study is useful for quality control practitioner,
particularly in plastic injection moulding industry. |
---|