Formation of a Nanorod-Assembled TiO2 ActinomorphicFlower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing

This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorodassembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphicflower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvi...

Full description

Saved in:
Bibliographic Details
Main Authors: Musa Mohamed Zahidi, Musa Mohamed Zahidi, Mohamad Hafiz Mamat, Mohamad Hafiz Mamat, A Shamsul Rahimi A Subki, A Shamsul Rahimi A Subki, Mohd Hanapiah Abdullah, Mohd Hanapiah Abdullah, Hamizura Hassan, Hamizura Hassan, Mohd Khairul Ahmad, Mohd Khairul Ahmad, Suriani Abu Bakar, Suriani Abu Bakar, Azmi Mohamed, Azmi Mohamed, Bunsho Ohtani, Bunsho Ohtani
Format: Article
Language:English
Published: Mdpi 2023
Subjects:
Online Access:http://eprints.uthm.edu.my/10451/1/J15823_9762ac0f5e599b24ddb1cf260afb8c25.pdf
http://eprints.uthm.edu.my/10451/
https://doi.org/10.3390/nano13020256
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorodassembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphicflower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvised clamp. The samples were characterised using FESEM, HRTEM, XRD, Raman, XPS, and Hall effect measurements for their structural and electrical properties. Compared to the undoped sample, the rutile-phased TAFM sample had finer nanorods with an average 42 nm diameter assembled to form microsphere-like structures. It also had higher oxygen vacancy sites, electron concentration, and mobility. In addition, a reversed double-beam photoacoustic spectroscopy measurement was performed for TAFM, revealing that the sample had a high electron trap density of up to 2.5 µmolg1. The TAFM showed promising results when employed as the resistive-type sensing film for a humidity sensor, with the highest sensor response of 53,909% obtained at 3 at.% Ta doping. Adding rGO to 3 at.% TAFM further improved the sensor response to 232,152%.