Kombinasi rangkaian neural buatan dengan model linear: aplikasinya dalam Sains Kesihatan
Pembangunan metodologi yang mengintegrasikan model linear dan rangkaian neural buatan dalam bidang sains kesihatan adalah suatu pendekatan yang menarik untuk meningkatkan kualiti pemodelan berserta ramalan. Kajian sebelum ini cenderung memberi penekanan kepada teknik tunggal, yang terbukti tidak men...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | http://eprints.usm.my/61006/1/FARAH%20MUNA%20BINTI%20MOHAMAD%20GHAZALI-FINAL%20THESIS%20P-SGD001519%28R%29-E.pdf http://eprints.usm.my/61006/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pembangunan metodologi yang mengintegrasikan model linear dan rangkaian neural buatan dalam bidang sains kesihatan adalah suatu pendekatan yang menarik untuk meningkatkan kualiti pemodelan berserta ramalan. Kajian sebelum ini cenderung memberi penekanan kepada teknik tunggal, yang terbukti tidak mencukupi secara komprehensif. Justeru, terdapat keperluan secara statistik yang lebih holistik yang menggabungkan beberapa teknik, seperti model LiReNN, untuk meningkatkan ketepatan dalam pemodelan sains kesihatan. Kajian ini bertujuan untuk membangunkan model regresi linear dengan rangkaian neural yang menumpukan kepada kecekapan, tahap kompetensi, membuat peramalan, dan mengesahkan ketepatan model, serta mempermudah proses analisis data melalui antara muka pengguna grafik (GUI). Pendekatan gabungan ini melibatkan penggunaan butstrap, regresi linear, dan rangkaian neural hadapan suapan berbilang lapisan, disokong oleh GUI. Ketepatan kaedah dinilai melalui nilai MSE.net dan R2, menunjukkan peningkatan yang signifikan dalam ketepatan, keberkesanan, dan kecekapan analisis data. Hasil ini membantu dalam pembangunan metodologi penyelidikan yang lebih kukuh, menyokong keputusan yang lebih tepat, dan menyediakan penggunaan GUI yang lebih interaktif. Pendekatan ini meningkatkan keberkesanan aplikasi pemodelan LiReNN, membolehkan pengguna untuk mencapai hasil optimum tanpa keperluan kepada pengetahuan mendalam dalam pengaturcaraan atau analisis data. Secara keseluruhan, pendekatan ini tidak hanya meningkatkan ketepatan dan kecekapan analisis data, tetapi juga menyediakan antara muka pengguna yang lebih mesra pengguna dan efisien melalui penggunaan GUI. |
---|