Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery

Poly(vinylidene fluoride-co-hexafluoropropylene) PVDF-HFP is a promising candidate as a separator in lithium-ion batteries owing to its outstanding chemical resistance, high mechanical and thermal stability with lower cost; however, its pristine form has limited characteristics that require furth...

Full description

Saved in:
Bibliographic Details
Main Author: Farooqui, Usaid Ur Rehman
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.usm.my/51391/1/Ternary%20Hybrid%20Pvdf-Hfp%20Pani%20Go%20Polymer%20Electrolyte%20Membrane%20For%20Lithium%20Ion%20Battery.pdf
http://eprints.usm.my/51391/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usm.eprints.51391
record_format eprints
spelling my.usm.eprints.51391 http://eprints.usm.my/51391/ Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery Farooqui, Usaid Ur Rehman T Technology TP Chemical Technology Poly(vinylidene fluoride-co-hexafluoropropylene) PVDF-HFP is a promising candidate as a separator in lithium-ion batteries owing to its outstanding chemical resistance, high mechanical and thermal stability with lower cost; however, its pristine form has limited characteristics that require further modification to achieve enhanced performance. Therefore, in this research ternary hybrid PVDF-HFP/PANI/GO were develop and the scope were divided into three phase which at first, different dosages of polyaniline (PANI) (1 wt%, 2 wt%, and 3 wt%) are incorporated into PVDF-HFP polymer matrix to fabricate PVDF-HFP/PANI polymer electrolyte membrane by using breath-figure method. The PANI (2 wt%) inclusion influenced the ionic conductivity and enhanced it from 1.98 × 10-4 S cm-1 of pristine PVDF-HFP membrane to 1.04 × 10-3 S cm-1; however, its plasticizing effect resulted in tensile strength of pristine PVDF-HFP membrane from 4.2 MPa to 2.8 MPa. Secondly, the effect of graphene oxide (GO) is investigated by varying different amount of GO (1 wt%, 2.5 wt%, and 5 wt%) into PVDF-HFP polymer matrix. The GO (2.5 wt%) addition remarkably enhanced the tensile strength of PVDF-HFP membrane from 4.2 MPa to 12.5 MPa; however, it showed negligible effect on ionic conductivity of pristine PEM. Therefore, in third phase, PANI/GO composite material is combined for the unique properties of both the fillers. The ternary hybrid PVDFHFP/ PANI (2 wt%)/GO (10 wt%, 25 wt%, and 40 wt%) PEMs are synthesized and characterized for lithium ion batteries. The obtained PVDF-HFP/PANI/GO ternary membrane showed a remarkable improvement in tensile strength up to 8.8 MPa. Furthermore, the PVDFHFP/ PANI/GO ternary membrane exhibited outstanding thermal stability with Td up to 498°C, improved morphology, highest electrolyte uptake (367.5%) and an excellent porosity of around 89%. Moreover, the obtained optimum pristine PVDF-HFP, PVDFHFP/ PANI, and PVDF-HFP/PANI/GO PEMs were considered for further electrochemical characterization and modelling. Also, the R-CPE model provided a best quality fit with MSE value of around 5% compared to R-C and R-L model. Further, the prepared optimum PEMs is successfully applied in lithium ion battery and showed good specific capacity for initial 10 cycles. However, PVDF-HFP/PANI/GO ternary PEM resulted in better stability compared to other PEMs; therefore, it is tested for capacity retention and it retained over 95% capacity after 30 cycles. In conclusion, the proposed PVDF-HFP/PANI/GO ternary membrane is a potential candidate as a separator in future lithium-ion batteries. 2019-04-01 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/51391/1/Ternary%20Hybrid%20Pvdf-Hfp%20Pani%20Go%20Polymer%20Electrolyte%20Membrane%20For%20Lithium%20Ion%20Battery.pdf Farooqui, Usaid Ur Rehman (2019) Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic T Technology
TP Chemical Technology
spellingShingle T Technology
TP Chemical Technology
Farooqui, Usaid Ur Rehman
Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
description Poly(vinylidene fluoride-co-hexafluoropropylene) PVDF-HFP is a promising candidate as a separator in lithium-ion batteries owing to its outstanding chemical resistance, high mechanical and thermal stability with lower cost; however, its pristine form has limited characteristics that require further modification to achieve enhanced performance. Therefore, in this research ternary hybrid PVDF-HFP/PANI/GO were develop and the scope were divided into three phase which at first, different dosages of polyaniline (PANI) (1 wt%, 2 wt%, and 3 wt%) are incorporated into PVDF-HFP polymer matrix to fabricate PVDF-HFP/PANI polymer electrolyte membrane by using breath-figure method. The PANI (2 wt%) inclusion influenced the ionic conductivity and enhanced it from 1.98 × 10-4 S cm-1 of pristine PVDF-HFP membrane to 1.04 × 10-3 S cm-1; however, its plasticizing effect resulted in tensile strength of pristine PVDF-HFP membrane from 4.2 MPa to 2.8 MPa. Secondly, the effect of graphene oxide (GO) is investigated by varying different amount of GO (1 wt%, 2.5 wt%, and 5 wt%) into PVDF-HFP polymer matrix. The GO (2.5 wt%) addition remarkably enhanced the tensile strength of PVDF-HFP membrane from 4.2 MPa to 12.5 MPa; however, it showed negligible effect on ionic conductivity of pristine PEM. Therefore, in third phase, PANI/GO composite material is combined for the unique properties of both the fillers. The ternary hybrid PVDFHFP/ PANI (2 wt%)/GO (10 wt%, 25 wt%, and 40 wt%) PEMs are synthesized and characterized for lithium ion batteries. The obtained PVDF-HFP/PANI/GO ternary membrane showed a remarkable improvement in tensile strength up to 8.8 MPa. Furthermore, the PVDFHFP/ PANI/GO ternary membrane exhibited outstanding thermal stability with Td up to 498°C, improved morphology, highest electrolyte uptake (367.5%) and an excellent porosity of around 89%. Moreover, the obtained optimum pristine PVDF-HFP, PVDFHFP/ PANI, and PVDF-HFP/PANI/GO PEMs were considered for further electrochemical characterization and modelling. Also, the R-CPE model provided a best quality fit with MSE value of around 5% compared to R-C and R-L model. Further, the prepared optimum PEMs is successfully applied in lithium ion battery and showed good specific capacity for initial 10 cycles. However, PVDF-HFP/PANI/GO ternary PEM resulted in better stability compared to other PEMs; therefore, it is tested for capacity retention and it retained over 95% capacity after 30 cycles. In conclusion, the proposed PVDF-HFP/PANI/GO ternary membrane is a potential candidate as a separator in future lithium-ion batteries.
format Thesis
author Farooqui, Usaid Ur Rehman
author_facet Farooqui, Usaid Ur Rehman
author_sort Farooqui, Usaid Ur Rehman
title Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
title_short Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
title_full Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
title_fullStr Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
title_full_unstemmed Ternary Hybrid Pvdf-Hfp Pani Go Polymer Electrolyte Membrane For Lithium Ion Battery
title_sort ternary hybrid pvdf-hfp pani go polymer electrolyte membrane for lithium ion battery
publishDate 2019
url http://eprints.usm.my/51391/1/Ternary%20Hybrid%20Pvdf-Hfp%20Pani%20Go%20Polymer%20Electrolyte%20Membrane%20For%20Lithium%20Ion%20Battery.pdf
http://eprints.usm.my/51391/
_version_ 1724074453155971072
score 13.188404