Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials

Maxillofacial prostheses are used to restore the functional and anatomical defects of the maxillofacial region caused by trauma or tumour. It is beneficial to the patients if the materials used for the fabrication of the maxillofacial prostheses could demonstrate antimicrobial effects and resist...

Full description

Saved in:
Bibliographic Details
Main Author: Rahman, Farhana
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://eprints.usm.my/49671/1/FARHANA%20RAHMAN-FINAL%20THESIS%20P-SGM000617%28R%29_24%20pages.pdf
http://eprints.usm.my/49671/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usm.eprints.49671
record_format eprints
spelling my.usm.eprints.49671 http://eprints.usm.my/49671/ Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials Rahman, Farhana R Medicine Maxillofacial prostheses are used to restore the functional and anatomical defects of the maxillofacial region caused by trauma or tumour. It is beneficial to the patients if the materials used for the fabrication of the maxillofacial prostheses could demonstrate antimicrobial effects and resist microbial adherence hence reducing the risk of infection. The objective of this study is to evaluate the antimicrobial effect, surface roughness and microbial adherence of the locally produced material namely modified polymethyl methacrylate (m-PMMA) against commercially produced polymethyl methacrylate (c-PMMA), silicone A-2000 and silicone A-2186 which are commonly used materials for maxillofacial prostheses. The microbial strains namely Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans) and Candida albicans (C. albicans) were used in this study. Antimicrobial effect of maxillofacial prosthetic materials was determined by agar diffusion test, whilst microbial adherence was analysed using a direct colony-counting method and surface roughness of tested materials was determined using profilometer. Scanning electron microscopy (SEM) images were also used to examine the surface roughness and microbial adherence. One-way ANOVA was used to analyse surface roughness and Multivariate Analysis Of Variance (MANOVA) was used to analyse microbial adherence. For antimicrobial activity, it was observed that all tested materials did not inhibit the growth of all tested microbial strains. Surface roughness analysis showed significant difference (p<0.05) between PMMA and silicone elastomers. There was also significant difference in bacterial adherence on the tested materials in which significantly higher colony-forming unit (CFU) of S. aureus and S. mutans were observed on roughened surfaces namely silicone elastomers than that of PMMA (p>0.017). No significant difference was observed in the adherence of C. albicans between silicone elastomers and PMMA. It can be concluded that the presence of fillers in m-PMMA may not be adequate to promote the release of antimicrobial agents, however, m-PMMA showed less microbial adherence in comparison to other tested materials. The findings also demonstrate that surface roughness of the materials play an important role in microbial adherence. 2021-03 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/49671/1/FARHANA%20RAHMAN-FINAL%20THESIS%20P-SGM000617%28R%29_24%20pages.pdf Rahman, Farhana (2021) Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials. Masters thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic R Medicine
spellingShingle R Medicine
Rahman, Farhana
Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
description Maxillofacial prostheses are used to restore the functional and anatomical defects of the maxillofacial region caused by trauma or tumour. It is beneficial to the patients if the materials used for the fabrication of the maxillofacial prostheses could demonstrate antimicrobial effects and resist microbial adherence hence reducing the risk of infection. The objective of this study is to evaluate the antimicrobial effect, surface roughness and microbial adherence of the locally produced material namely modified polymethyl methacrylate (m-PMMA) against commercially produced polymethyl methacrylate (c-PMMA), silicone A-2000 and silicone A-2186 which are commonly used materials for maxillofacial prostheses. The microbial strains namely Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans) and Candida albicans (C. albicans) were used in this study. Antimicrobial effect of maxillofacial prosthetic materials was determined by agar diffusion test, whilst microbial adherence was analysed using a direct colony-counting method and surface roughness of tested materials was determined using profilometer. Scanning electron microscopy (SEM) images were also used to examine the surface roughness and microbial adherence. One-way ANOVA was used to analyse surface roughness and Multivariate Analysis Of Variance (MANOVA) was used to analyse microbial adherence. For antimicrobial activity, it was observed that all tested materials did not inhibit the growth of all tested microbial strains. Surface roughness analysis showed significant difference (p<0.05) between PMMA and silicone elastomers. There was also significant difference in bacterial adherence on the tested materials in which significantly higher colony-forming unit (CFU) of S. aureus and S. mutans were observed on roughened surfaces namely silicone elastomers than that of PMMA (p>0.017). No significant difference was observed in the adherence of C. albicans between silicone elastomers and PMMA. It can be concluded that the presence of fillers in m-PMMA may not be adequate to promote the release of antimicrobial agents, however, m-PMMA showed less microbial adherence in comparison to other tested materials. The findings also demonstrate that surface roughness of the materials play an important role in microbial adherence.
format Thesis
author Rahman, Farhana
author_facet Rahman, Farhana
author_sort Rahman, Farhana
title Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
title_short Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
title_full Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
title_fullStr Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
title_full_unstemmed Antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
title_sort antimicrobial effect and microbial adherenceto maxillofacial prosthetic materials
publishDate 2021
url http://eprints.usm.my/49671/1/FARHANA%20RAHMAN-FINAL%20THESIS%20P-SGM000617%28R%29_24%20pages.pdf
http://eprints.usm.my/49671/
_version_ 1709668318479122432
score 13.160551