Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center

Introduction: Computed tomography (CT) has become the preferred technique in the diagnostic toolkit for head and brain imaging and superior to Magnetic Resonance Imaging (MRI) for the assessment of head injury. Indications for head imaging includes head injury, acute stroke, subarachnoid haemorrh...

Full description

Saved in:
Bibliographic Details
Main Author: Abdullah@ Yong, Ariz Chong@Chong Chee
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/43126/1/Dr._Ariz_Chong_Abdullah-24_pages.pdf
http://eprints.usm.my/43126/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usm.eprints.43126
record_format eprints
spelling my.usm.eprints.43126 http://eprints.usm.my/43126/ Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center Abdullah@ Yong, Ariz Chong@Chong Chee RD Surgery Introduction: Computed tomography (CT) has become the preferred technique in the diagnostic toolkit for head and brain imaging and superior to Magnetic Resonance Imaging (MRI) for the assessment of head injury. Indications for head imaging includes head injury, acute stroke, subarachnoid haemorrhage etc. A more recent development in CT imaging has been the development of a mobile CT scanner which can be beneficial from clinical and economical point of views. Objective: To compare the image quality of CT brain images produced by portable head CT scanner, CereTom, to standard fixed CT scanner. Methods: This was a single center retrospective study involving CT brain images of112 neurosurgical patients admitted to Hospital Sultanah Aminah Johor Bahrufrom December 2014 until March 2015. Hounsfield unit(HU) of all the selected images from CereTom were measured for: air, water and bone. Three observers (2 neurosurgeons and 1 radiologist) evaluated independently the CT brain images acquired on standard fixed CT scanner within 48 hours apart with the CereTom. Each images were evaluated for visualization of lesions, grey-white matterdifferentiation and streak artifacts at 3 different levels which were centrum semiovale, basal ganglia and middle cerebellar peduncles. Each evaluation was scored either 1 (poor), 2 (average) or 3 (good). The scores were sum up forming an ordinal reading of 3 to 9. Results:Hounsfield unit (HU) for measured air, water and bone from CereTom were within the range of recommendedby ACR. Evaluation of streak artifacts demonstrated scores of 8.54 (IQR 0.24) with fixed CT scanner versus 7.46 (IQR 1.16) for CereTom at centrum semiovale (z -5.67), 8.38 ± 1.12 versus 7.32± 1.63 at the basal ganglia and 8.21 ± 1.30 versus 6.97 ± 2.77 at the middle cerebellar peduncles. Comparison of grey-white matter differentiation showed scores of 8.27 ± 1.04 with fixed CT scanner versus 7.21 ±1.41 for CereTom at centrum semiovale, 8.26 ±1.07 versus 7.00 ±1.47 at the basal ganglia and 8.38± 1.11 versus 6.74 ± 1.55 at the middle cerebellar peduncles. Evaluation for visualization of lesions showed scores of 8.86 (IQR 0.09) with fixed CT scanner compared to 8.21 (IQR 0.34) for CereTom at centrum semiovale (z -4.24), 8.93 (IQR 0) versus 8.18 (IQR 0.57) at the basal ganglia (z -5.32) and 8.79 (IQR 0.11) versus 8.06 (IQR 0.41) at the middle cerebellar peduncles (z -4.93). All the results were significant with p value < 0.01. Conclusions: The results of this study showed there wassignificant difference in terms of image quality between the images produced by fixed standard CT scanner and CereTom with the latter being more inferior. However, Hounsfield unit (HU) of images produced by CereTom do fulfil the recommendation by ACR. 2016 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/43126/1/Dr._Ariz_Chong_Abdullah-24_pages.pdf Abdullah@ Yong, Ariz Chong@Chong Chee (2016) Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center. Masters thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic RD Surgery
spellingShingle RD Surgery
Abdullah@ Yong, Ariz Chong@Chong Chee
Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center
description Introduction: Computed tomography (CT) has become the preferred technique in the diagnostic toolkit for head and brain imaging and superior to Magnetic Resonance Imaging (MRI) for the assessment of head injury. Indications for head imaging includes head injury, acute stroke, subarachnoid haemorrhage etc. A more recent development in CT imaging has been the development of a mobile CT scanner which can be beneficial from clinical and economical point of views. Objective: To compare the image quality of CT brain images produced by portable head CT scanner, CereTom, to standard fixed CT scanner. Methods: This was a single center retrospective study involving CT brain images of112 neurosurgical patients admitted to Hospital Sultanah Aminah Johor Bahrufrom December 2014 until March 2015. Hounsfield unit(HU) of all the selected images from CereTom were measured for: air, water and bone. Three observers (2 neurosurgeons and 1 radiologist) evaluated independently the CT brain images acquired on standard fixed CT scanner within 48 hours apart with the CereTom. Each images were evaluated for visualization of lesions, grey-white matterdifferentiation and streak artifacts at 3 different levels which were centrum semiovale, basal ganglia and middle cerebellar peduncles. Each evaluation was scored either 1 (poor), 2 (average) or 3 (good). The scores were sum up forming an ordinal reading of 3 to 9. Results:Hounsfield unit (HU) for measured air, water and bone from CereTom were within the range of recommendedby ACR. Evaluation of streak artifacts demonstrated scores of 8.54 (IQR 0.24) with fixed CT scanner versus 7.46 (IQR 1.16) for CereTom at centrum semiovale (z -5.67), 8.38 ± 1.12 versus 7.32± 1.63 at the basal ganglia and 8.21 ± 1.30 versus 6.97 ± 2.77 at the middle cerebellar peduncles. Comparison of grey-white matter differentiation showed scores of 8.27 ± 1.04 with fixed CT scanner versus 7.21 ±1.41 for CereTom at centrum semiovale, 8.26 ±1.07 versus 7.00 ±1.47 at the basal ganglia and 8.38± 1.11 versus 6.74 ± 1.55 at the middle cerebellar peduncles. Evaluation for visualization of lesions showed scores of 8.86 (IQR 0.09) with fixed CT scanner compared to 8.21 (IQR 0.34) for CereTom at centrum semiovale (z -4.24), 8.93 (IQR 0) versus 8.18 (IQR 0.57) at the basal ganglia (z -5.32) and 8.79 (IQR 0.11) versus 8.06 (IQR 0.41) at the middle cerebellar peduncles (z -4.93). All the results were significant with p value < 0.01. Conclusions: The results of this study showed there wassignificant difference in terms of image quality between the images produced by fixed standard CT scanner and CereTom with the latter being more inferior. However, Hounsfield unit (HU) of images produced by CereTom do fulfil the recommendation by ACR.
format Thesis
author Abdullah@ Yong, Ariz Chong@Chong Chee
author_facet Abdullah@ Yong, Ariz Chong@Chong Chee
author_sort Abdullah@ Yong, Ariz Chong@Chong Chee
title Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center
title_short Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center
title_full Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center
title_fullStr Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center
title_full_unstemmed Limitation of mobile head CT scanner (ceretom) image quality in a neurosurgery center
title_sort limitation of mobile head ct scanner (ceretom) image quality in a neurosurgery center
publishDate 2016
url http://eprints.usm.my/43126/1/Dr._Ariz_Chong_Abdullah-24_pages.pdf
http://eprints.usm.my/43126/
_version_ 1643710670968979456
score 13.214268