Function Approximation With Multilayered Perceptrons Using L1 Criterion
Kaedah ralat kuasa dua terkecil atau kaedah kriteria L2 biasanya digunakan bagi persoalan penghampiran fungsian dan pengitlakan di dalam algoritma perambatan balik ralat. Tujuan kajian ini adalah untuk mempersembahkan suatu kriteria ralat mutlak terkecil bagi perambatan balik sigmoid selain darip...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2003
|
Subjects: | |
Online Access: | http://eprints.usm.my/31090/1/ONG_HONG_CHOON.pdf http://eprints.usm.my/31090/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Kaedah ralat kuasa dua terkecil atau kaedah kriteria L2 biasanya digunakan bagi
persoalan penghampiran fungsian dan pengitlakan di dalam algoritma perambatan balik
ralat. Tujuan kajian ini adalah untuk mempersembahkan suatu kriteria ralat mutlak
terkecil bagi perambatan balik sigmoid selain daripada kriteria ralat kuasa dua terkecil
yang biasa digunakan. Kami membentangkan struktur fungsi ralat untuk diminimumkan
serta hasil pembezaan terhadap pemberat yang akan dikemaskinikan. Tumpuan ·kajian
ini ialah terhadap model perseptron multilapisan yang mempunyai satu lapisan
tersembunyi tetapi perlaksanaannya boleh dilanjutkan kepada model yang mempunyai
dua atau lebih lapisan tersembunyi.
The least squares error or L2 criterion approach has been commonly used in functional
approximation and generalization in the error backpropagation algorithm. The purpose
of this study is to present an absolute error criterion for the sigmoidal backpropagatioll I rather than the usual least squares error criterion. We present the structure of the error
function to be minimized and its derivatives with respect to the weights to be updated.
The focus in the study is on the single hidden layer multilayer perceptron (MLP) but the
implementation may be extended to include two or more hidden layers. |
---|