Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations
We apply the homotopy perturbation method to obtain the solution of partial differential equations of fractional order. This method is powerful tool to find exact and approximate solution of many linear and nonlinear partial differential equations of fractional order. Convergence of the method is pr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Publishing Corporation
2015
|
Subjects: | |
Online Access: | http://ddms.usim.edu.my/handle/123456789/8320 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply the homotopy perturbation method to obtain the solution of partial differential equations of fractional order. This method is powerful tool to find exact and approximate solution of many linear and nonlinear partial differential equations of fractional order. Convergence of the method is proved and the convergence analysis is reliable enough to estimate the maximum absolute truncated error of the series solution. The fractional derivatives are described in the Caputo sense. Some examples are presented to verify convergence hypothesis and simplicity of the method. |
---|