A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids

Purpose: The purpose of this study is to implement a new class of similarity transformation in analyzing the three-dimensional boundary layer flow of hybrid nanofluid. The Cu-Al2O3/water hybrid nanofluid is formulated using the single-phase nanofluid model with modified thermophysical properties. De...

Full description

Saved in:
Bibliographic Details
Main Authors: Khashi'ie, Najiyah Safwa, M. Arifin, Norihan, Pop, Ioan, Nazar, Roslinda, Hafidzuddin, Mohd Ezad Hafidz
Format: Article
Published: Emerald Group Publishing 2021
Online Access:http://psasir.upm.edu.my/id/eprint/95845/
https://www.emerald.com/insight/content/doi/10.1108/HFF-04-2020-0200/full/html
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.95845
record_format eprints
spelling my.upm.eprints.958452023-03-28T04:46:31Z http://psasir.upm.edu.my/id/eprint/95845/ A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids Khashi'ie, Najiyah Safwa M. Arifin, Norihan Pop, Ioan Nazar, Roslinda Hafidzuddin, Mohd Ezad Hafidz Purpose: The purpose of this study is to implement a new class of similarity transformation in analyzing the three-dimensional boundary layer flow of hybrid nanofluid. The Cu-Al2O3/water hybrid nanofluid is formulated using the single-phase nanofluid model with modified thermophysical properties. Design/methodology/approach: The governing partial differential equations are reduced to the ordinary (similarity) differential equations using the proposed similarity transformation. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain their solutions. The features of the reduced skin frictions and the velocity profiles for different values of the physical parameters are analyzed and discussed. Findings: The non-uniqueness of the solutions is observed for certain physical parameters. The dual solutions are perceived for both permeable and impermeable cases and being the main agenda of the work. The execution of stability analysis proves that the first solution is undoubtedly stable than the second solution. An increase in the mass transpiration parameter leads to the uniqueness of the solution. Oppositely, as the injection parameter increase, the two solutions remain. However, no separation point is detected in this problem within the considered parameter values. The present results are decisive to the pair of alumina and copper only. Originality/value: The present findings are original and can benefit other researchers particularly in the field of fluid dynamics. This study can provide a different insight of the transformation that is applicable to reduce the complexity of the boundary layer equations. Emerald Group Publishing 2021 Article PeerReviewed Khashi'ie, Najiyah Safwa and M. Arifin, Norihan and Pop, Ioan and Nazar, Roslinda and Hafidzuddin, Mohd Ezad Hafidz (2021) A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow, 31 (3). pp. 1-20. ISSN 0961-5539 https://www.emerald.com/insight/content/doi/10.1108/HFF-04-2020-0200/full/html 10.1108/HFF-04-2020-0200
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
description Purpose: The purpose of this study is to implement a new class of similarity transformation in analyzing the three-dimensional boundary layer flow of hybrid nanofluid. The Cu-Al2O3/water hybrid nanofluid is formulated using the single-phase nanofluid model with modified thermophysical properties. Design/methodology/approach: The governing partial differential equations are reduced to the ordinary (similarity) differential equations using the proposed similarity transformation. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain their solutions. The features of the reduced skin frictions and the velocity profiles for different values of the physical parameters are analyzed and discussed. Findings: The non-uniqueness of the solutions is observed for certain physical parameters. The dual solutions are perceived for both permeable and impermeable cases and being the main agenda of the work. The execution of stability analysis proves that the first solution is undoubtedly stable than the second solution. An increase in the mass transpiration parameter leads to the uniqueness of the solution. Oppositely, as the injection parameter increase, the two solutions remain. However, no separation point is detected in this problem within the considered parameter values. The present results are decisive to the pair of alumina and copper only. Originality/value: The present findings are original and can benefit other researchers particularly in the field of fluid dynamics. This study can provide a different insight of the transformation that is applicable to reduce the complexity of the boundary layer equations.
format Article
author Khashi'ie, Najiyah Safwa
M. Arifin, Norihan
Pop, Ioan
Nazar, Roslinda
Hafidzuddin, Mohd Ezad Hafidz
spellingShingle Khashi'ie, Najiyah Safwa
M. Arifin, Norihan
Pop, Ioan
Nazar, Roslinda
Hafidzuddin, Mohd Ezad Hafidz
A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
author_facet Khashi'ie, Najiyah Safwa
M. Arifin, Norihan
Pop, Ioan
Nazar, Roslinda
Hafidzuddin, Mohd Ezad Hafidz
author_sort Khashi'ie, Najiyah Safwa
title A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
title_short A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
title_full A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
title_fullStr A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
title_full_unstemmed A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
title_sort new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids
publisher Emerald Group Publishing
publishDate 2021
url http://psasir.upm.edu.my/id/eprint/95845/
https://www.emerald.com/insight/content/doi/10.1108/HFF-04-2020-0200/full/html
_version_ 1761620400965419008
score 13.160551