Shifts in diatom dominance associated with seasonal changes in an estuarine-mangrove phytoplankton community

A study on seasonal phytoplankton abundance and composition in a mangrove estuary, Matang Mangrove Forest Reserve (MMFR), Malaysia, was carried out to determine the phytoplankton structure in this ecosystem, and to identify potential indicators of environmental changes. Phytoplankton samples were co...

Full description

Saved in:
Bibliographic Details
Main Authors: Hilaluddin, Fareha, Md. Yusoff, Fatimah, Toda, Tatsuki
Format: Article
Published: MDPI AG 2020
Online Access:http://psasir.upm.edu.my/id/eprint/85811/
https://www.mdpi.com/2077-1312/8/7/528
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study on seasonal phytoplankton abundance and composition in a mangrove estuary, Matang Mangrove Forest Reserve (MMFR), Malaysia, was carried out to determine the phytoplankton structure in this ecosystem, and to identify potential indicators of environmental changes. Phytoplankton samples were collected bimonthly from June 2010 to April 2011, to cover both dry (June to October) and wet (November to April) seasons, at four selected sampling sites along the river. Diatoms showed the highest number of species (50 species) from a total of 85 phytoplankton species from 76 genera. Diatoms contributed more than 90% of the total phytoplankton abundance during the dry season (southwest monsoon) and less than 70% during the wet season (northeast monsoon) as dinoflagellates became more abundant during the rainy season. Two diatoms were recorded as dominant species throughout the sampling period; Cyclotella sp. and Skeletonema costatum. Cyclotella sp. formed the most abundant species (62% of total phytoplankton) during the dry period characterized by low nutrients and relatively low turbidity. Skeletonema costatum contributed 93% of the total phytoplankton in October, which marked the end of the dry season and the beginning of the wet season, characterized by strong winds and high waves leading to the upwelling of the water column. Massive blooms of Skeletonema costatum occurred during the upwelling when total nitrogen (TN) and total phosphorus (TP) concentrations were highest (p < 0.05) throughout the year. The abundance of diatom species during the wet season was more evenly distributed, with most diatom species contributing less than 12% of the total phytoplankton. Autotrophic producers such as diatoms were limited by high turbidity during the northeast monsoon when the rainfall was high. During the wet season, Cyclotella and Skeletonema costatum only contributed 9% and 5% of the total phytoplankton, respectively, as dinoflagellates had more competitive advantage in turbid waters. This study illustrates that some diatom species such as Cyclotella sp. and Skeletonema costatum could be used as indicators of the environmental changes in marine waters.