Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model

Missing values is a common problem found in dataset from any field of research. A data value in a dataset can be missing due to numerous reasons such as non-response items in the interview and survey, equipment malfunction, human error and faulty data transmission. The occurrence of missing values i...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Jaya, Mohd Izham, Sidi, Fatimah, Affendey, Lilly Suriani, Ishak, Iskandar, A. Jabar, Marzanah
Format: Conference or Workshop Item
Language:English
Published: Database Technologies and Applications Research Group (DbTA), Faculty of Computer Science and Information Technology, Universiti Putra Malaysia 2019
Online Access:http://psasir.upm.edu.my/id/eprint/75514/1/ISICTMA2019-2.pdf
http://psasir.upm.edu.my/id/eprint/75514/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.75514
record_format eprints
spelling my.upm.eprints.755142019-10-07T07:36:46Z http://psasir.upm.edu.my/id/eprint/75514/ Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model Mohd Jaya, Mohd Izham Sidi, Fatimah Affendey, Lilly Suriani Ishak, Iskandar A. Jabar, Marzanah Missing values is a common problem found in dataset from any field of research. A data value in a dataset can be missing due to numerous reasons such as non-response items in the interview and survey, equipment malfunction, human error and faulty data transmission. The occurrence of missing values in a dataset need to be managed using appropriate imputation methods to estimate the approximate values to replace the missing values. The problem of missing values also led to a data quality problem which then resulted inaccurate decisions. In this work, we compared and evaluated various imputation methods including deletion of records with missing value (DEL), mean values imputation (MEAN), k-Nearest Neighbor (KNN), Predictive Mean Matching (PMM), MissForest and Ontology-based Framework for Financial Decision Making (OFFDM) towards the effectiveness of asset valuation prediction model. In portfolio management, asset valuation prediction model is used to aid the decision making process. Additionally, we adopted MissForest method in the OFFDM which aim to improve the OFFDM. We conducted several experiments using different dataset derived from different imputation methods to measure the accuracy, Root Mean Squared Error (RMSE) and F-measure of the prediction model which being built in Artificial Neural Network (ANN). We found that dataset derived from DEL resulted the lowest accuracy and the highest RMSE. Whereas, the adoption of MissForest method in OFFDM resulted the highest accuracy and second lowest RMSE value. The selection of imputation methods is depended on the severity of the task in hands as each method is different in its complexity and efficiency. Imputation method such as MissForest is efficient but required more computational resources. On the other hand, simpler methods such as DEL is still popular due to its simplicity but less efficient. Database Technologies and Applications Research Group (DbTA), Faculty of Computer Science and Information Technology, Universiti Putra Malaysia 2019 Conference or Workshop Item PeerReviewed text en http://psasir.upm.edu.my/id/eprint/75514/1/ISICTMA2019-2.pdf Mohd Jaya, Mohd Izham and Sidi, Fatimah and Affendey, Lilly Suriani and Ishak, Iskandar and A. Jabar, Marzanah (2019) Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model. In: International Symposium on ICT Management and Administration (ISICTMA2019), 31 July-2 Aug. 2019, Putrajaya Marriott Hotel, Malaysia. (pp. 11-15).
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Missing values is a common problem found in dataset from any field of research. A data value in a dataset can be missing due to numerous reasons such as non-response items in the interview and survey, equipment malfunction, human error and faulty data transmission. The occurrence of missing values in a dataset need to be managed using appropriate imputation methods to estimate the approximate values to replace the missing values. The problem of missing values also led to a data quality problem which then resulted inaccurate decisions. In this work, we compared and evaluated various imputation methods including deletion of records with missing value (DEL), mean values imputation (MEAN), k-Nearest Neighbor (KNN), Predictive Mean Matching (PMM), MissForest and Ontology-based Framework for Financial Decision Making (OFFDM) towards the effectiveness of asset valuation prediction model. In portfolio management, asset valuation prediction model is used to aid the decision making process. Additionally, we adopted MissForest method in the OFFDM which aim to improve the OFFDM. We conducted several experiments using different dataset derived from different imputation methods to measure the accuracy, Root Mean Squared Error (RMSE) and F-measure of the prediction model which being built in Artificial Neural Network (ANN). We found that dataset derived from DEL resulted the lowest accuracy and the highest RMSE. Whereas, the adoption of MissForest method in OFFDM resulted the highest accuracy and second lowest RMSE value. The selection of imputation methods is depended on the severity of the task in hands as each method is different in its complexity and efficiency. Imputation method such as MissForest is efficient but required more computational resources. On the other hand, simpler methods such as DEL is still popular due to its simplicity but less efficient.
format Conference or Workshop Item
author Mohd Jaya, Mohd Izham
Sidi, Fatimah
Affendey, Lilly Suriani
Ishak, Iskandar
A. Jabar, Marzanah
spellingShingle Mohd Jaya, Mohd Izham
Sidi, Fatimah
Affendey, Lilly Suriani
Ishak, Iskandar
A. Jabar, Marzanah
Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
author_facet Mohd Jaya, Mohd Izham
Sidi, Fatimah
Affendey, Lilly Suriani
Ishak, Iskandar
A. Jabar, Marzanah
author_sort Mohd Jaya, Mohd Izham
title Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
title_short Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
title_full Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
title_fullStr Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
title_full_unstemmed Evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
title_sort evaluation of missing values imputation methods towards the effectiveness of asset valuation prediction model
publisher Database Technologies and Applications Research Group (DbTA), Faculty of Computer Science and Information Technology, Universiti Putra Malaysia
publishDate 2019
url http://psasir.upm.edu.my/id/eprint/75514/1/ISICTMA2019-2.pdf
http://psasir.upm.edu.my/id/eprint/75514/
_version_ 1648738235209220096
score 13.209306